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Key characteristics of financial data (Tsay, 2010)

Linear models (ARMA or ARIMA) cannot explain a number of
relevant features often found in financial data.

1. Leptokurtosis (high kurtosis)

• Time series tend to have heavy/fat tails, i.e. empirical
distribution is highly peaked at the mean.

2. Volatility clustering

• ”... Large changes tend to be followed by large changes, of
either sign, and small changes tend to be followed by small
changes...” (Mandelbrot, 1963)

• Turbulent (high variability) period is followed by quiet (low
variability) period; these subperiods are recurrent but not in
a periodic way.

• It is described by conditional variance of time series (which
is not directly observable)

3. Leverage effect

• There is a tendency for changes in prices to be negatively
correlated with changes in volatility.

• Volatility tends to rise more with a large price fall (”bad
news”) than with a price increase (”good news”) of the same
magnitude.
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Additional characteristics (Bollerslev, Engle and Nelson, 1994)

in Handbook of Econometrics, Vol. IV, eds. Engle and McFadden

4. Non-trading periods

• Information that accumulates when financial markets are
closed is reflected in prices after the markets reopen.

5. Forecastable events

• Forecastable releases of important information are associ-
ated with high ex ante volatility.

6. Volatility and autocorrelation

• There are evidences of strong inverse relation between volatil-
ity and autocorrelation.

7. Co-movements in volatiities

• ”... It seems fair to say that when stock volatilities change,
they all tend to change in the same direction.” (Black, 1976)
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Autoregressive conditional heteroskedasticity model (ARCH)

Engle (1982) – The Nobel prize winner in 2003

We start by defining conditional mean, µt, and conditional vari-
ance, σ2

t ,
µt = E [rt|Ft−1]

σ2
t = E

[
(rt − µt)

2 |Ft−1

]
Ft−1 is information set available at time t− 1

For rt it is assumed to follow ARMA specification:

rt = µt + at

so that µt:

µt = ϕ0 +

p∑
i=1

ϕirt−i −
q∑

j=1

θjat−j
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What about error term at?

at = σtϵt, ϵt : iid(0, 1)

For conditional variance σ2
t it is assumed:

σ2
t = α0 +

m∑
i=1

αia
2
t−i

α0 > 0, α1, . . . , αm ≥ 0

This is ARCH(m) model.

Distributions for ϵt:

N (0, 1) distribution

Standardized t distribution

Generalized error distribution.

Model implies the following:

Large past squared shocks a2t−1, . . . , a
2
t−m cause a large conditional

variance σ2
t .
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ARCH (1) model

σ2
t = α0 + α1a

2
t−1, at = σtϵt

α0 > 0, α1 ≥ 0

The unconditional mean of at is 0:

E(at) = E [E(at|Ft−1)] = E [σtE(ϵt)] = 0

The unconditional variance of at is
α0

1− α1
:

var(at) = E(a2t ) = E
[
E(a2t |Ft−1)

]
= E

[
α0 + α1a

2
t−1

]
var(at) = α0 + α1E

(
a2t−1

)
var(at) = α0 + α1 E

(
a2t−1

)︸ ︷︷ ︸
var(at)

var(at) =
α0

1− α1

=⇒ 0 ≤ α1 < 1

For the fourth moment to be finite, E(a4t ), (proof is skipped):

=⇒ 0 ≤ α2
1 <

1

3
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Characteristics of ARCH models (Tsay, 2010, 2013)

The key advantages (Tsay, 2013):

� Models can produce volatility clusters.

� The shocks at have heavy tails.

Weakness of ARCH models (Tsay, 2010):

� Positive and negative shocks have the same effects on volatil-
ity.

� They are restrictive in terms of parameter values given the
conditions needed for the fourth moment to be finite.

� They seem as models without clear economic implication.

� They have a tendency to overpredict the volatility, because
they respond slowly to large isolated shocks.
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How to test for ARCH effect?

Identification of the conditional mean equation is conducted by
standard procedures (the Box-Jenkins approach).

Let ât be residuals from the mean equation.

They are used to investigate the presence of conditional heteroskedas-
ticity or ARCH effects.

Two test-statistics are implemented:

a) The Box-Ljung Q2 statistic

b) The Engle LM statistic.

a) The Box-Ljung Q2 statistic is just the Box-Ljung statistic, but
applied on squared residuals, â2t .

Under the null hypothesis of constant variance, it is assumed that
first m elements of ACF of a2t are zero:

H0 : ρ⋆1 = ρ⋆2 = . . . = ρ⋆m = 0,

where ρ⋆l , l = 1, . . . ,m is the lag-l ordinary autocorrelation coeffi-
cient of a2t .
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b) The Engle statistic (Lagrange multiplier test) has the similar
idea as Q2. The baseline model is:

â2t = d0 + d1â
2
t−1 + d2â

2
t−2 + . . .+ dmâ2t−m + et

� The null hypothesis of constant variance implies no autocor-
relation in â2t :

H0 : d1 = d2 = . . . = dm = 0.

� The validity of the null is checked by F -test that compares
residual sum of squares of 2 models: restricted and unre-
stricted. Both models are estimated by the OLS. Numbers
of degrees of freedom are: m and T − 2m− 1.

Notation: ARCH F (m).

� Asymptotically, this test-statistic has χ2 distribution with m
d.o.f. In this case it is calculated as T (or T −m) times R2 of
the baseline model.

Notation: ARCH χ2(m).

� Consequence: The order of ARCH model is suggested by the
number of significant SPACF coefficients of â2t .
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Generalized autoregressive conditional

heteroskedasticity model (GARCH)

Bollerslev (1986)

at = σtϵt, ϵt : iid(0, 1)

Conditional variance is defined as:

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j

α0 > 0, α1, . . . , αm ≥ 0, β1, . . . , βs ≥ 0,
∑max(m,s)

i=1 (αi + βi) < 1

Additionally, αi = 0 for i > m, βj = 0 for j > s.

Notation: GARCH(m, s).

Given above conditions model enables constant unconditional vari-
ance.
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σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j

Let ξt = a2t − σ2
t . Then,

σ2
t = a2t − ξt and σ2

t−i = a2t−i − ξt−i, i = 0, 1, . . . , s.

GARCH(m, s) is:

a2t = α0 +

max(m,s)∑
i=1

(αi + βi)a
2
t−i + ξt −

s∑
j=1

βjξt−j

New error term ξt has zero mean and zero autocovariance coeffi-
cients. However, it can be shown that it is not iid sequence.

We have reached ARMA(m∗, s) model for a2t , and m∗ = max(m, s).

Conclusion:

GARCH model is ARMA model for squared error term a2t .
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Consequence for unconditional variance:

E(a2t ) = α0 +

max(m,s)∑
i=1

(αi + βi)E(a2t−i) + E(ξt)−
s∑

j=1

βjE(ξt−j)

var(a2t ) = E
(
a2t
)
=

α0

1−
∑max(m,s)

i=1 (αi + βi)



14 Z. Mladenović

GARCH(1,1) model

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

α0 > 0, α1 ≥ 0, β1 ≤ 1, α1 + β1 < 1

Two issues are considered:

1. Relation with ARCH model.

2. Forecasting volatility.
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1. Relation with ARCH model

GARCH(1,1) model:

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

When we replace σ2
t−1, σ

2
t−2, etc.

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

= α0 + α1a
2
t−1 + β1

(
α0 + α1a

2
t−2 + β1σ

2
t−2

)︸ ︷︷ ︸
σ2
t−1

= α0(1 + β1) + α1a
2
t−1 + α1β1a

2
t−2 + β2

1

(
α0 + α1a

2
t−3 + β1σ

2
t−3

)︸ ︷︷ ︸
σ2
t−2

= . . .

= α0(1 + β1 + β2
1 + β3

1 + . . . ) + α1a
2
t−1 + α1β1a

2
t−2 + α1β

2
1a

2
t−3 + . . .
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For |β1| < 1:

σ2
t =

α0

1− β1
+ α1a

2
t−1 + α1β1a

2
t−2 + α1β

2
1a

2
t−3 + . . .

� GARCH(1, 1) has ARCH(∞) representation.

� Given: 0 < β1 < 1, the impact of a2t−i on volatility diminishes
quickly with increasing i.

� GARCH(1, 1) model is more parsimonious specification than
ARCH model. With only three parameters GARCH captures
the influence of all shocks.
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2. Forecasting volatility

Relevant for:

� Measuring risk, as in Riskmetrics

� Estimating value at risk (VaR)

� GARCH models may underpredict VaR, especially if its de-
rived under the assumption of normality!!! Combination with
EVT approach is useful.
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Based on h observations future values of volatility are forecasted.

The forecast origin is h.

GARCH(1, 1) model:

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, at = σtϵt

True value of conditional variability in h+ 1 is:

σ2
h+1 = α0 + α1a

2
h + β1σ

2
h

= α0 + α1

(
ϵ2hσ

2
h

)
+ β1σ

2
h + α1σ

2
h − α1σ

2
h

= α0 + (α1 + β1)σ
2
h + α1

(
ϵ2h − 1

)
σ2
h

One-step ahead forecast σ̂2
h(1) of σ2

h+1 is:

σ̂2
h(1) = E

(
σ2
h+1|Fh

)
= α0 + α1a

2
h + β1σ

2
h
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True value of conditional variability in h+ 2 is:

σ2
h+2 = α0 + α1a

2
h+1 + β1σ

2
h+1

= α0 + (α1 + β1)σ
2
h+1 + α1

(
ϵ2h+1 − 1

)
σ2
h+1

Two-step ahead forecast σ̂2
h(2) of σ2

h+2 is:

σ̂2
h(2) = E

(
σ2
h+2|Fh

)
= α0 + (α1 + β1) σ̂h(1) + α1E

[
(ϵ2h+1 − 1)|Fh

]
σ2
h+1

= α0 + (α1 + β1) σ̂h(1) becauseE
[
(ϵ2h+1 − 1)|Fh

]
= 0

Three-step ahead forecast σ̂2
h(3) of σ2

h+3 is:

σ̂2
h(3) = E

(
σ2
h+3|Fh

)
= α0 + (α1 + β1) σ̂h(2)

= α0 + (α1 + β1) [α0 + (α1 + β1) σ̂h(1)]

= α0 (1 + (α1 + β1))︸ ︷︷ ︸[
1− (α1 + β1)

2
]

1− (α1 + β1)

+ (α1 + β1)
2
σ̂h(1)
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In general, for any forecasting horizon l,

l-step ahead forecast σ̂2
h(l) of σ2

h+l:

σ̂2
h(l) = α0

[
1 + (α1 + β1) + (α1 + β1)

2
+ . . .+ (α1 + β1)

(l−2)
]

+ (α1 + β1)
(l−1)

σ̂2
h(1)

= α0

[
1− (α1 + β1)

(l−1)
]

1− (α1 + β1)
+ (α1 + β1)

(l−1)
σ̂2
h(1)

Since α1 + β1 < 1, for relatively long horizon l (l → ∞) forecasts
converge to unconditional variance of at:

σ̂2
h(l) →

α0

1− (α1 + β1)
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� If α1 + β1 = 1, then

GARCH becomes integrated GARCH model, IGARCH(1,1).

It does not have stable unconditional variance (Why?)

� Volatility forecast is:

σ̂2
h(l) = α0(l − 1) + σ̂2

h(1)

� This forecast depends on the one-step forecast and further
linearly increases according to α0 and forecast horizon l.

� The one-step ahead forecast has long-lasting effect on multi-
step forecast.

� When α0 = 0, then σ̂2
h(l) = σ̂2

h(1). This is commonly used in
practical work.
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Some modifications of GARCH models

1. ARCH-M, 2. TGARCH, and 3. EGARCH.

1. ARCH-M model: ARCH in mean

Only mean equation is modified in the following way: new ex-
planatory variable is added being conditional variance from the
volatility equation:

rt =

p∑
i=1

ϕirt−i −
q∑

j=0

θjat−j + ζσ2
t

• Parameter of σ2
t , ζ measures risk premium.

• If ζ > 0, then increased risk leads to a rise in the mean return.

• Instead of σ2
t the following variables may appear: σt or ln(σt).

• All three measures may be included not only in time t, but for
example in time t-1.
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2. TGARCH model: Threshold GARCH model

Different name:

The GJR model (Glosten, Jagannathan and Runkle, 1993).

� This model accounts for the possibility that volatility reacts
asymmetrically to negative and positive random shocks.

� Negative shock in the previous period (at−1 < 0) is likely to
influence current volatility more than positive shock of the
same magnitude (at−1 > 0).

� Volatility equation for TGARCH(1, 1) model is:

σ2
t = α0 + α1a

2
t−1 + α⋆

1Nt−1a
2
t−1 + β1σ

2
t−1.

Nt−1 =

{
1, at−1 < 0
0, at−1 ≥ 0

� Impact of the positive shock: α1.

� Impact of the negative shock: α1 + α⋆
1.

� It is expected that: α⋆
1 > 0.
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Tests for asymmetries in volatilities (Engle and Ng, 1993)

1. Negative sign bias test

2. Negative size bias test

3. Joint test for sign and size bias

They are based on estimated residuals:

• Ordinary residuals, ât, or

• Standardized residuals,
ât
σ̂t

.

1. Negative sign bias test

S−
t−1 =

{
1, ât−1 < 0
0, ât−1 ≥ 0

The following equation is set:

â2t = γ0 + γ1S
−
t−1 + error term

The negative sign bias test is test for the significance of γ1.
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2. Negative size bias test

S−
t−1 =

{
1, ât−1 < 0
0, ât−1 ≥ 0

The following equation is considered:

â2t = γ0 + γ2 S−
t−1ât−1︸ ︷︷ ︸

Interactive dummy

+ error term

The negative size bias test is test for the significance of γ2.

S−
t−1ât−1 =

{
ât−1, ât−1 < 0
0, ât−1 ≥ 0
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3. Sign and size bias test

S+
t−1 = 1− S−

t−1

Relevant model is:

â2t = γ0 + γ1S
−
t−1 + γ2S

−
t−1ât−1 + γ3S

+
t−1ât−1 + error term

The joint significance test, H0 : γ1 = γ2 = γ3 = 0, is:

TR2 : χ2
3

and R2 is coefficient of determination from the above estimated
regression.

Individual t-ratio may also be used. If the parameter given below
is significant:

� γ1 =⇒ Significant negative sign bias exists.

� γ2 =⇒ Significant negative size bias exists.

� γ3 =⇒ Significant positive size bias exists.
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3. EGARCH model: Exponential GARCH model (Nelson,
1991)

• Model for volatility (one of many forms) is:

ln(σ2
t ) = β0 + α1

(
at−1

σt−1

)
+ α⋆

1

∣∣∣∣at−1

σt−1

∣∣∣∣+ β1 ln(σ
2
t−1)

• The logarithmic transformation guarantees that variance will
never be negative.

• Standardized shock is introduced:
at
σt

.

• Relative size of the shock is relevant, and also the sign.

• The impact of the positive standardized shock:

α1 + α⋆
1.

• The impact of the negative standardized shock:

−α1 + α⋆
1.
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Note on the estimation of GARCH models

� Method of the maximum likelihood (ML) is usually based
on the maximization of log-likelihood function of the form
(assuming that the error term is normally distributed):

−T

2
ln 2π − 1

2

T∑
t=1

ln(σ2
t )−

1

2

T∑
t=1

a2t
σ2
t

� The presence of time-varying variance σ2
t implies that the

maximum of the function cannot be found analytically, but
numerically.

� Numerical solutions are based on the application of optimiza-
tion methods. Given that model is correctly specified consis-
tent estimators are reached.

� In the case error term does not have normal distribution,
quasi maximum likelihood (QML) is applied with different
standard errors derived from the Bollerslev-Wooldridge ap-
proach. Consistent estimators are provided by this modifica-
tion.
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Note on the optimization methods

� Methods available by softwares (like EVIEWS) are based on
the determination of the first and second derivatives of the
log-likelihood function with respect to the parameters values
at each iteration (the gradient and Hessian matrix respec-
tively).

� They are basically modification and substantial computational
improvement of the iterative Gauss-Newton algorithm.

� The BHHH (Bernt, Hall, Hall, Hausman) algorithm combines
calculation of the first derivatives numerically and calculation
of the approximation of the second derivatives. Such an ap-
proach increases the calculation speed.

� Empirical results may differ across different softwares.
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ARCH modeling – EVIEWS 
 

1. The monthly returns of Intel stock – ARCH1.wf1; Tsay (2010), p. 123 

- 124. The example is modified by extending the sample (1973-2008) and 

estimated models (see also Tsay, 2013, An Introduction to Analysis of 

Financial Data with R, Wiley) This new sample containing simple 

returns is considered here.  
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The squared mean corrected values of series exhibit strong autocorrelation, 

suggesting the presence of ARCH structure. 

 
Dependent Variable: RT   

Method: Least Squares   

Sample: 1973M01 2008M12   

Included observations: 432   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.022139 0.006181 3.581808 0.0004 
     
     R-squared 0.000000     Mean dependent var 0.022139 

Adjusted R-squared 0.000000     S.D. dependent var 0.128466 

S.E. of regression 0.128466     Akaike info criterion -1.263994 

Sum squared resid 7.113006     Schwarz criterion -1.254576 

Log likelihood 274.0227     Hannan-Quinn criter. -1.260276 

Durbin-Watson stat 1.956371    
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ACF and PACF of residuals 
 
 
 
 
 

    
 AC   PAC  Q-Stat  Prob 

     
     1 0.022 0.022 0.2047 0.651 

2 0.007 0.006 0.2255 0.893 
3 0.080 0.080 3.0417 0.385 
4 -0.054 -0.058 4.3330 0.363 
5 -0.014 -0.013 4.4246 0.490 
6 0.044 0.039 5.2716 0.509 
7 -0.109 -0.103 10.547 0.160 
8 -0.082 -0.080 13.540 0.095 
9 -0.008 -0.011 13.571 0.138 

10 0.029 0.052 13.938 0.176 
11 -0.057 -0.058 15.380 0.166 
12 0.046 0.037 16.319 0.177 

 
ACF and PACF of squared residuals 
 

 AC   PAC  Q-Stat  Prob 
     
     1 0.168 0.168 12.217 0.000 

2 0.136 0.111 20.286 0.000 
3 0.207 0.176 39.092 0.000 
4 0.193 0.134 55.353 0.000 
5 0.114 0.037 61.031 0.000 
6 0.083 0.002 64.046 0.000 
7 0.112 0.037 69.627 0.000 
8 0.051 -0.021 70.800 0.000 
9 0.077 0.031 73.424 0.000 

10 0.053 0.002 74.691 0.000 
11 0.042 0.001 75.490 0.000 
12 0.158 0.134 86.607 0.000 

     
      

 
Dependent Variable: RT   
Method: ML - ARCH (BHHH) - Normal distribution 

Included observations: 432   

Convergence achieved after 11 iterations  

Bollerslev-Wooldridge robust standard errors & covariance 

Presample variance: backcast (parameter = 0.7) 

GARCH = C(2) + C(3)*RESID(-1)^2  
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.019366 0.005707 3.393108 0.0007 
     
      Variance Equation   
     
     C 0.010984 0.001117 9.836414 0.0000 

RESID(-1)^2 0.382927 0.101562 3.770381 0.0002 
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R-squared -0.000467     Mean dependent var 0.022139 

Adjusted R-squared -0.000467     S.D. dependent var 0.128466 

S.E. of regression 0.128496     Akaike info criterion -1.326643 

Sum squared resid 7.116328     Schwarz criterion -1.298390 

Log likelihood 289.5549     Hannan-Quinn criter. -1.315489 

     
     
     

 

 

Interpretation of estimated parameters:  

• Expected monthly simple return for Intel stock is about 1.94%.  

• The unconditional variance is 0.010984/(1-0.382927)=0.017800, 

which is close to (S.E. of regression)2 = (0.128496)2 

 

However, ARCH(1) model does not perform well overall. The statistics 

reported are based on standardized residuals: Q(12)=13.03(0.37), 

Q2(10)=13.46(0.20), Q2(12)=24.80(0.02), Q2(24)=36.45(0.05), 

ARCH(12)=26.68(0.01), ARCH(24)=25.96(0.36). 

    

We can notice that significant autocorrelation exists at lag 12, which is 

probably due to seasonality. If GARCH(1,1) model is used instead of 

ARCH(1) this autocorrelation almost disappears.  

 

Models estimate volatility differently (graphed as conditional standard 

deviation).  
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2. The monthly log returns for IBM stock and S&P500 index, January 1926 – 

December 1999, 888 observations – ARCH2.wf1; Tsay (2010), p. 158-159.  
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2.1 GARCH(1,1) model for the monthly log return for S&P500 (SP) 
 

 
Dependent Variable: SP  

Method: ML ARCH - Normal distribution (OPG - BHHH / Marquardt 

        steps)   

     

Sample: 1926M01 1999M06  

Included observations: 882  

Convergence achieved after 42 iterations 

Coefficient covariance computed using Bollerslev-Wooldridge QML 

        sandwich with expected Hessian 

Presample variance: backcast (parameter = 0.7) 



 5 

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
     
     

Variable Coefficient Std. Error z-Statistic Prob.   
     
     

C 0.679662 0.146596 4.636310 0.0000 
     
     
 Variance Equation   
     
     

C 0.629930 0.350780 1.795795 0.0725 

RESID(-1)^2 0.115497 0.028551 4.045335 0.0001 

GARCH(-1) 0.867804 0.033304 26.05669 0.0000 
     
     

R-squared -0.000672     Mean dependent var 0.533113 

Adjusted R-squared -0.000672     S.D. dependent var 5.655301 

S.E. of regression 5.657202     Akaike info criterion 5.960518 

Sum squared resid 28195.47     Schwarz criterion 5.982206 

Log likelihood -2624.589     Hannan-Quinn criter. 5.968811 

Durbin-Watson stat 1.844350    
     
     

 
 
 

2.2 GARCH(1,1) model for SP with exogenous variable in the volatility 

equation (exogenous variable is the lag-one squared mean corrected 

return on IBM stock) 

 

 
Dependent Variable: SP  

Method: ML ARCH - Normal distribution (Marquardt / EViews legacy) 

     

Sample (adjusted): 1926M02 1999M06 

Included observations: 881 after adjustments 

Convergence achieved after 6 iterations 

Presample variance: backcast (parameter = 0.7) 

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*(IBM(-1) 

        -1.24)^2   
     
     

Variable Coefficient Std. Error z-Statistic Prob.   
     
     

C 0.526561 0.134108 3.926389 0.0001 
     
     
 Variance Equation   
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C 1.045882 0.157732 6.630772 0.0000 

RESID(-1)^2 0.124571 0.016049 7.761867 0.0000 

GARCH(-1) 0.851386 0.014558 58.48363 0.0000 

(IBM(-1)-1.24)^2 -0.008718 7.97E-14 -1.09E+11 0.0000 
     
     

R-squared -0.000001     Mean dependent var 0.531196 

Adjusted R-squared -0.000001     S.D. dependent var 5.658227 

S.E. of regression 5.658229     Akaike info criterion 5.963644 

Sum squared resid 28173.69     Schwarz criterion 5.990778 

Log likelihood -2621.985     Hannan-Quinn criter. 5.974020 

Durbin-Watson stat 1.844174    
     
     

 
 

2.3. Fitted conditional variances for SP from July to December 1999 

using models with (GF2) and without (GF1) the past log returns of IBM 

stock.  
 

 

 GF1 GF2 

1999M07 26.35839 21.81075 

1999M08 25.29412 21.25707 

1999M09 22.77741 19.27321 

1999M10 21.87333 18.76497 

1999M11 22.96281 16.59937 

1999M12 20.72576 15.29261 

 

 

The inclusion of the lag-1 return of IBM stock reduces the volatility of the 

S&P500 index return.  
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