

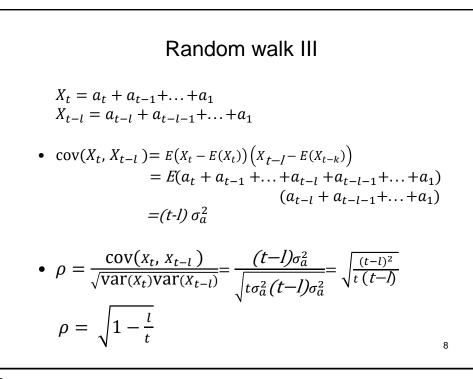
$$\begin{split} & \text{The simplest form of nonstationarity} \\ & \text{Random walk (RW)} \end{split}$$

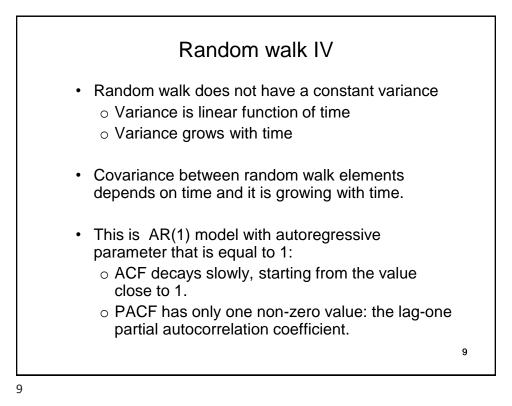
$$\begin{aligned} & \mathcal{L}_{t} = \mathcal{L}_{t-1} + a_{t}, \\ & \mathcal{L}_{t} = \mathcal{L}_{t-1} + a_{t}, \\ & \mathcal{L}_{t} = \mathcal{L}_{t-1} + a_{t}, \\ & \mathcal{L}_{t} = \mathcal{L}_{t-1} + \mathcal{L}_{t-2} = a_{t} + a_{t-1} + a_{t-2} + \mathcal{L}_{t-3} = \dots, \\ & \mathcal{L}_{t} = \mathcal{L}_{t} + a_{t-1} + a_{t-2} + \dots + a_{t} + \mathcal{L}_{0}, \\ & \mathcal{L}_{t} = a_{t} + a_{t-1} + a_{t-2} + \dots + a_{t}, \end{aligned}$$

Random walk II

$$X_{1} = a_{1}, var(X_{1}) = var(a_{1}) = \sigma_{a}^{2}$$

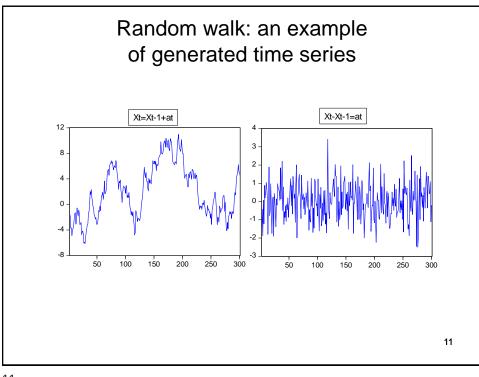
 $X_{2} = a_{2} + a_{1}, var(X_{2}) = var(a_{2} + a_{1}) = 2\sigma_{a}^{2}$
...
 $var(X_{t}) = var(a_{t} + a_{t-1} + a_{t-2} + ... + a_{1})$
 $= \underbrace{\sigma_{a}^{2} + \sigma_{a}^{2} + ... + \sigma_{a}^{2}}_{t}$
 $var(X_{t}) = t\sigma_{a}^{2}$.

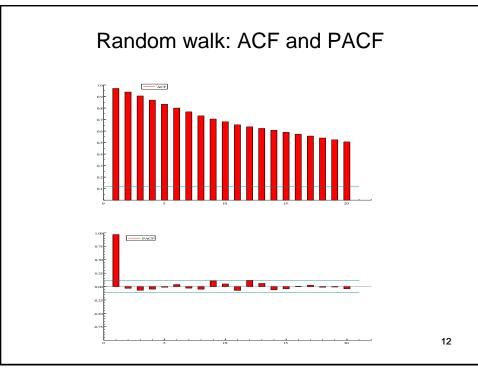




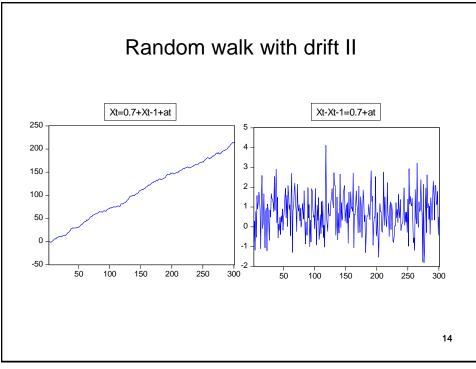
 $\begin{array}{l} \mbox{Random walk V} \\ \mbox{\bullet} \mbox{ Random walk is transformed into stationary time series by applying once the first difference operator.} \\ \mbox{\bullet} \mbox{\bullet} \mbox{t} \mbox{t}$

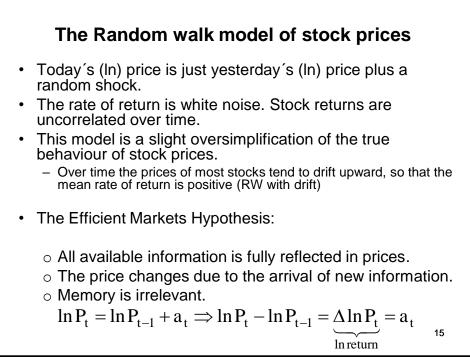
10

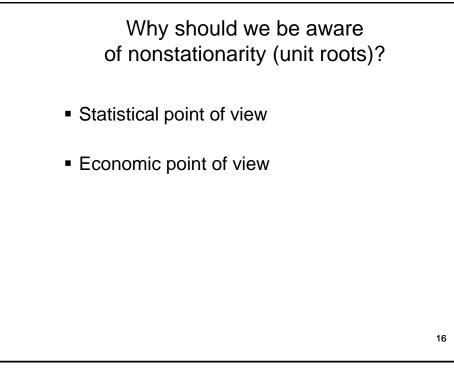




Parametric product of the equation of the eq



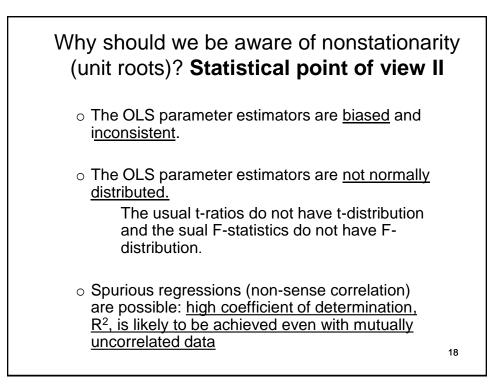


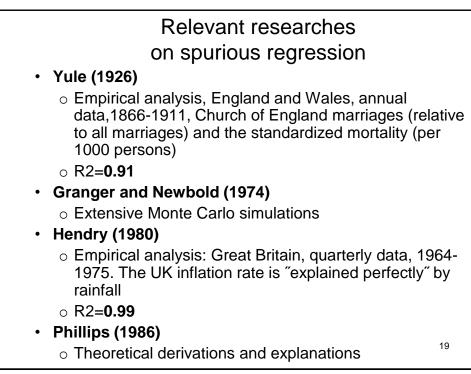


Why should we be aware of nonstationarity (unit roots)? **Statistical point of view**

• The application of standard linear regression model and standard statistical techniques (the OLS method) may induce invalid conclusions if variables employed in regression models are nonstationary.

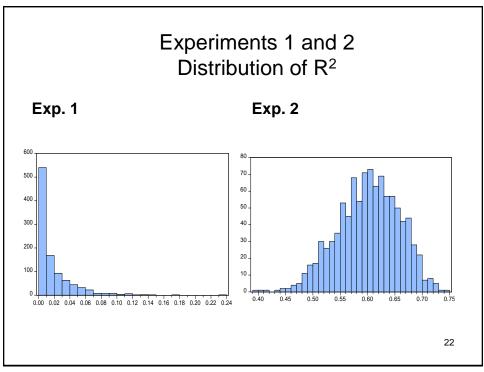
17

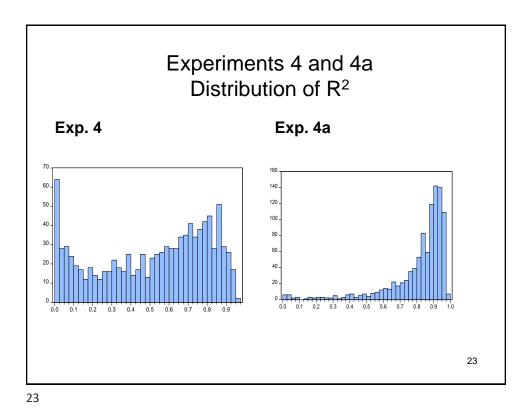


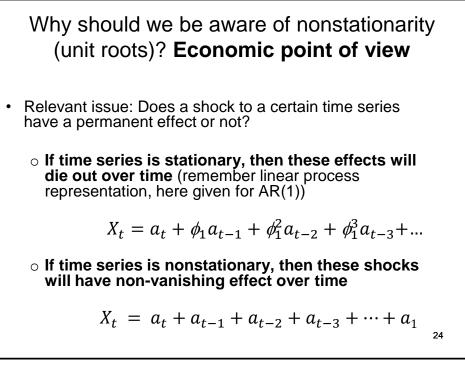


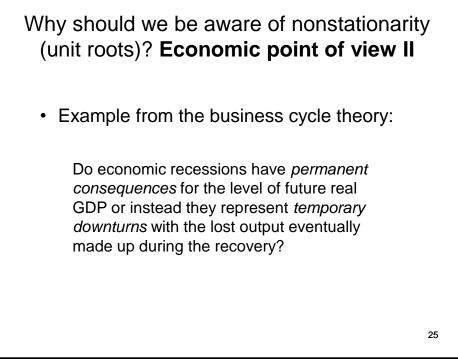
workfile spurious_reg u 1000 series r2'Two unrelated RWs' series y=y(-1)+ay series x=x(-1)+ax!nreps=1000 !nobs=150 for !repc=1 to !nrepssmpl @first+20 !nobs+20 equation eq1.ls y c xsmpl @first @first series y=0 series x=0'Coeff. of determination R2' r2(!repc)=@r2smpl @first+1 !nobs+20 'Two unrelated white noise processes'next smpl @first !nreps	Number of replication	Monte Carlo simulation Number of replications 1000, sample size 150, Coefficient of determination, R ²	
series ay=nrnd	series r2 !nreps=1000 !nobs=150 for !repc=1 to !nreps smpl @first @first series y=0 series x=0 smpl @first+1 !nobs+20 'Two unrelated white noise processes'	series y=y(-1)+ay series x=x(-1)+ax smpl @first+20 !nobs+20 equation eq1.ls y c x 'Coeff. of determination R2' r2(!repc)=@r2 next	

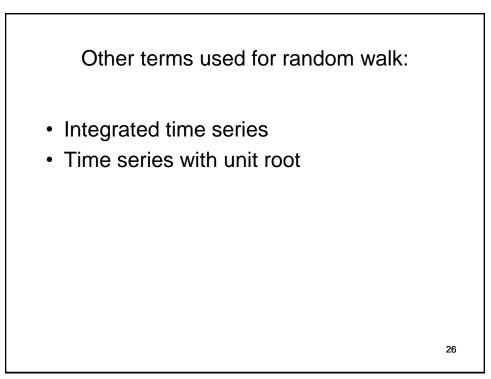
Average R ²		
Experiment	Time series	Average R ²
1.	Two unrelated stationary time series $X_t=0.6^*X_{t-1}+ax_t, Y_t=0.7^*Y_{t-1}+ay_t$	0.02
2.	Two correlated stationary time series $X_t=0.6^*X_{t-1}+ax_t, Y_t=1+X_t+ay_t$	0.60
3.	Two unrelated random walks $X_t = X_{t-1} + ax_t, Y_t = Y_{t-1} + ay_t$	0.23
4.	Two unrelated random walks with drift $X_t=0.1+X_{t-1}+ax_t$, $Y_t=0.2+Y_{t-1}+ay_t$	0.49
4a.	Two unrelated random walks with drift $X_t=0.5+X_{t-1}+ax_t$, $Y_t=0.2+Y_{t-1}+ay_t$	0.80

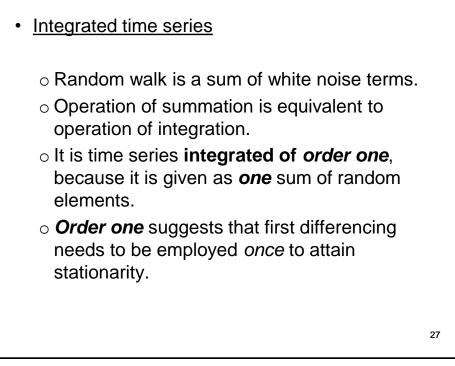


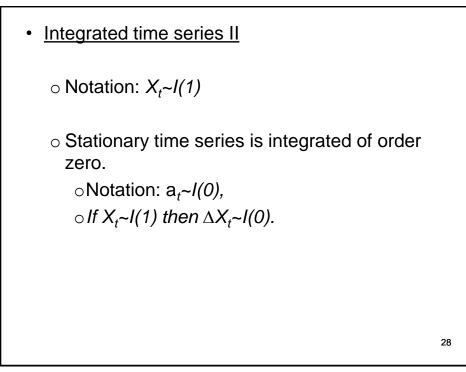








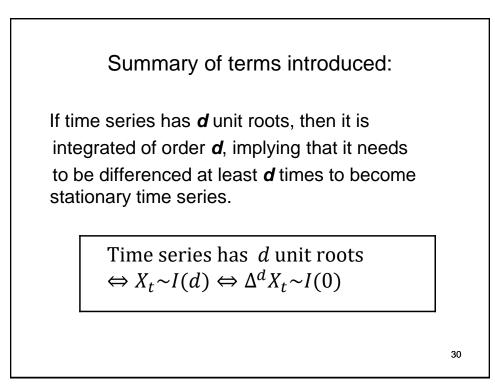


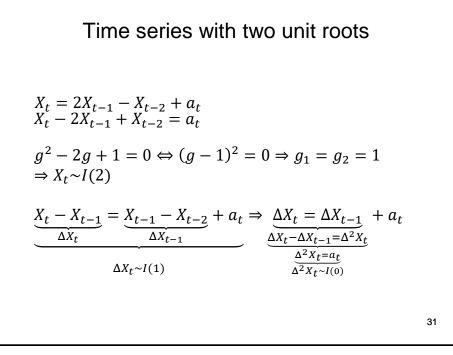


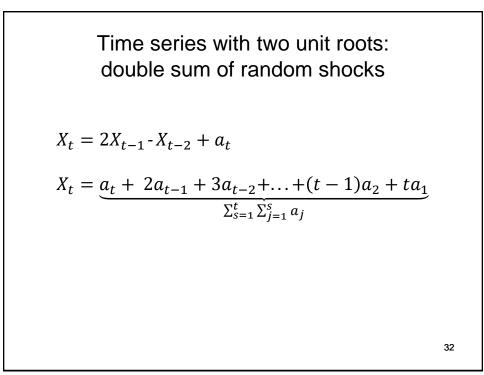
- Time series with unit root
 - AR(1) model with autoregressive parameter that is equal to one. The path of time series is determined by the solution of the following characteristic equation:

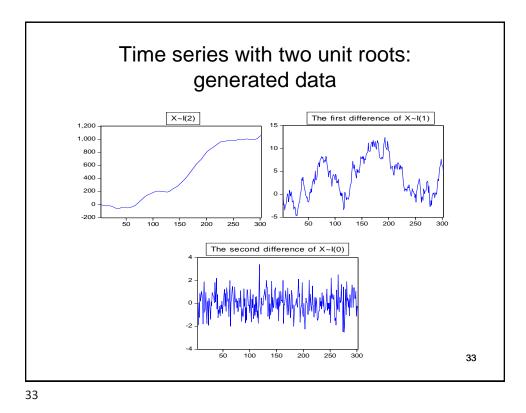
$$\begin{aligned} X_t - 1 \cdot X_{t-1} &= a_t \\ g - 1 &= 0 \Rightarrow g = 1. \end{aligned}$$

- \circ The root (solution) is exactly one. This is where the term unit root comes from.
- The number of unit roots is equal to the order of integration of time series.

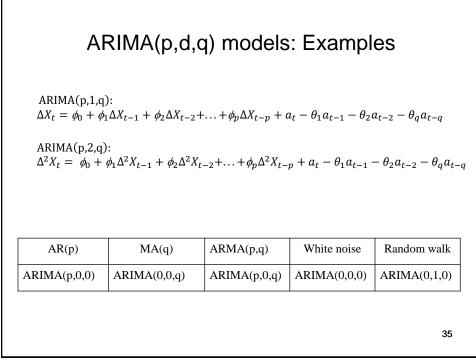


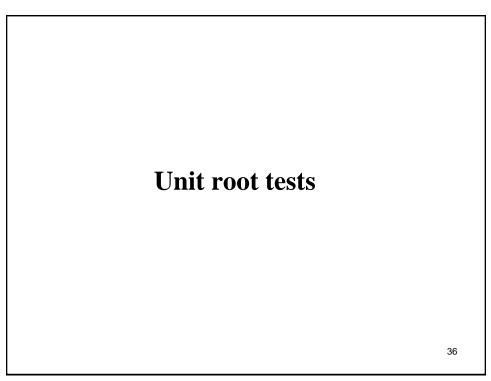


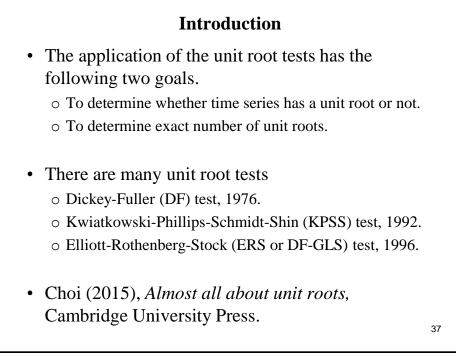


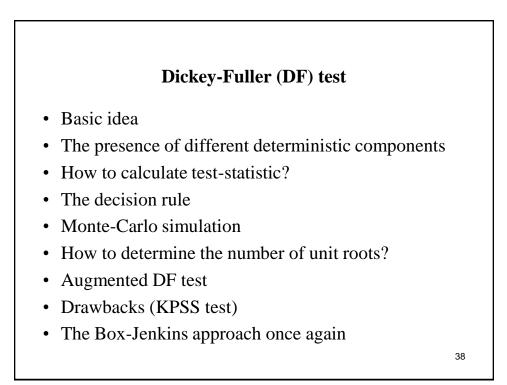


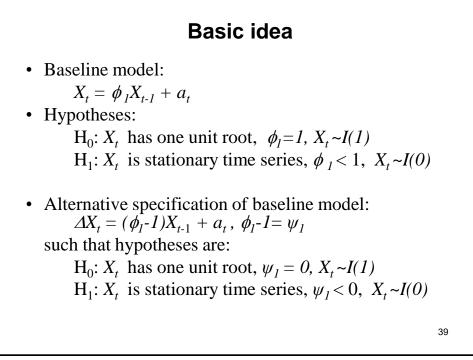
<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>



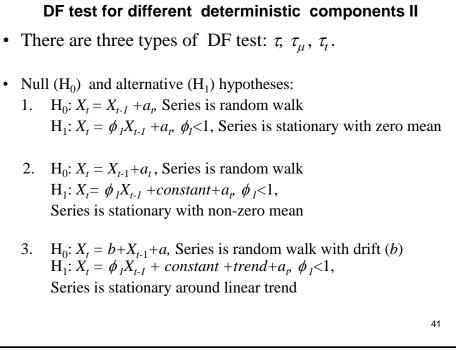




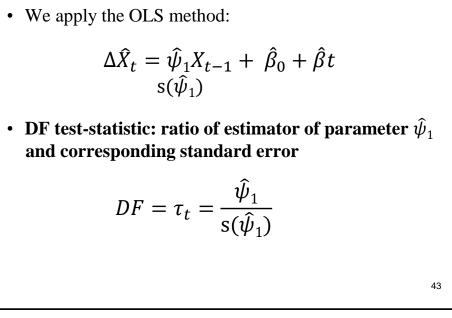




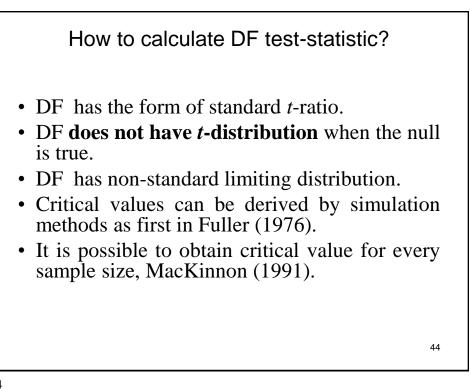
DF test for	r different de	eterministic c	omponents
DF test	τ	$ au_{\mu}$	$ au_t$
Deterministic components	None	Constant	Constant+ Linear trend
E(X _t)	0	μ	μ+bt, t=1,2,
			40

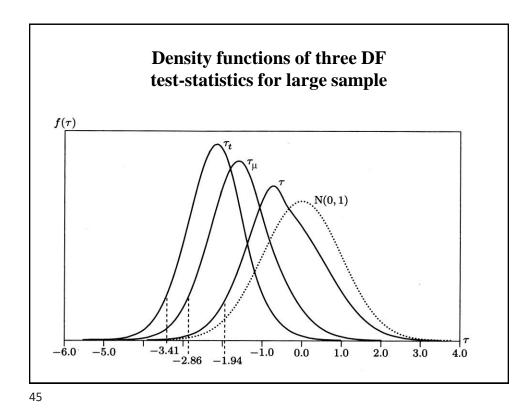


What is t	the relevant model to start with depending on deterministic components?
DF test	Model estimated by the OLS method based on sample of size <i>T</i>
τ	$\Delta X_t = \psi_I X_{t-1} + a_t$
$ au_{\mu}$	$\Delta X_t = \psi_I X_{t-1} + \beta_0 + a_t$
τ_t	$\Delta X_t = \psi_I X_{t-1} + \beta_0 + \beta t + a_t$
	42

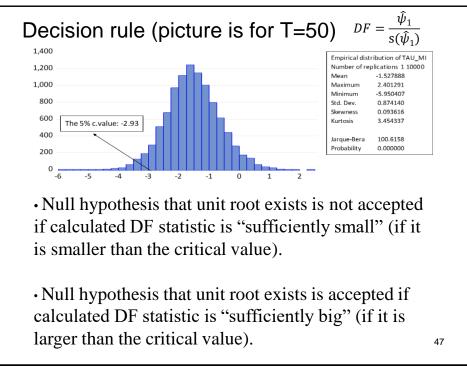


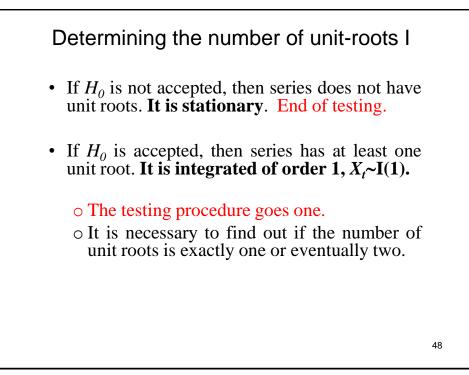
How to calculate DF test-statistic?

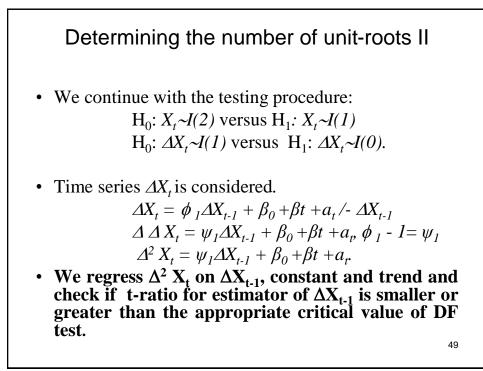


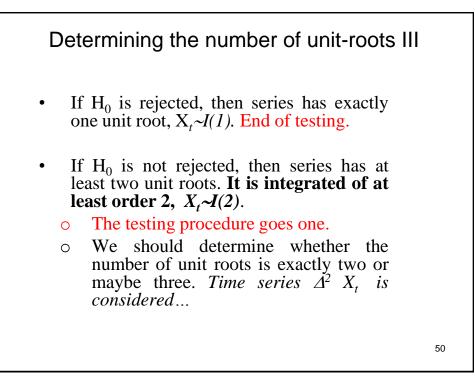


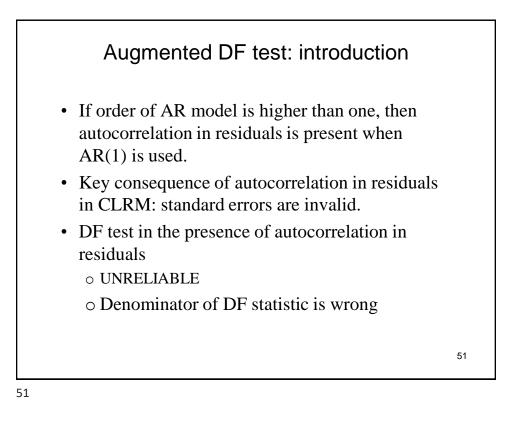
Critical values at the 5% level for
given sample size T (MacKinnon, 1991) $f = -1.9393 - \frac{0.398}{T}$ $f = -1.9393 - \frac{0.398}{T}$ $f = -2.8621 - \frac{2.738}{T} - \frac{8.36}{T^2}$ $f_t = -3.4126 - \frac{4.039}{T} - \frac{17.83}{T^2}$

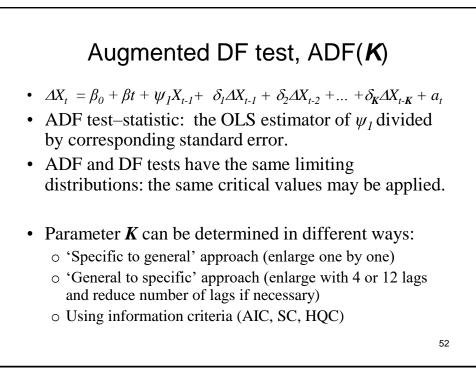


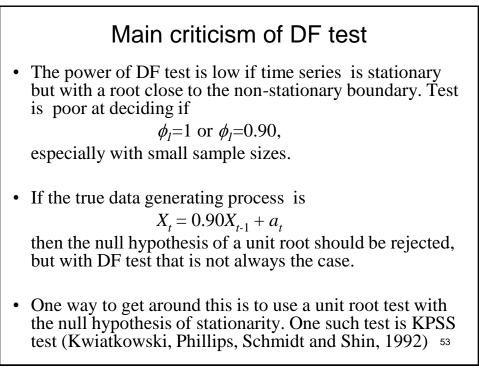


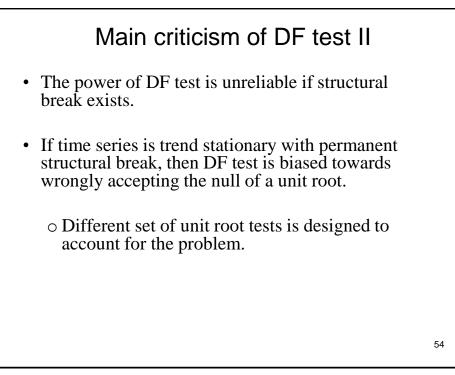


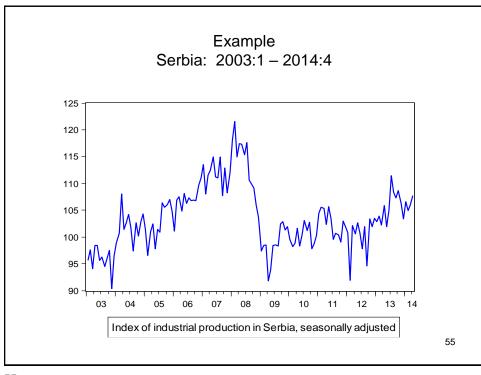


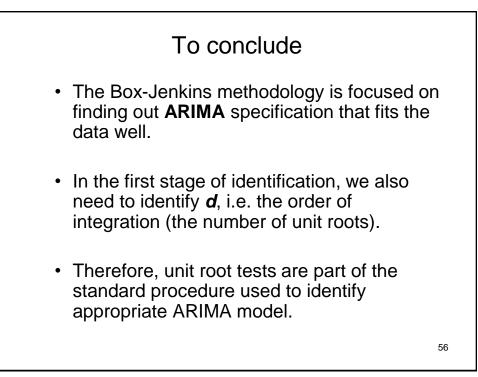


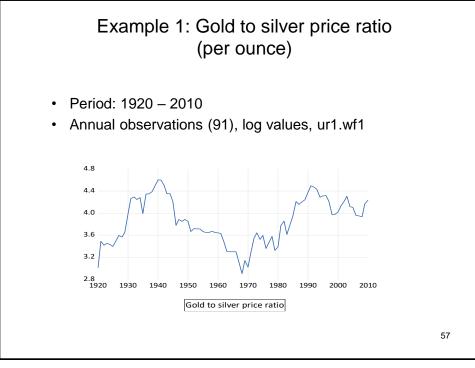


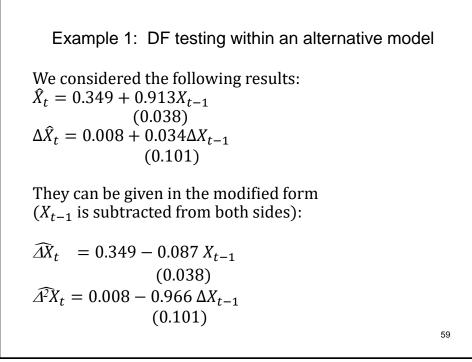


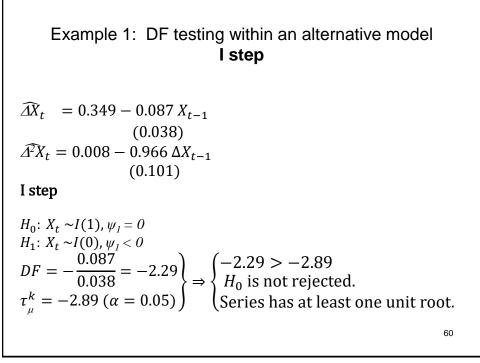


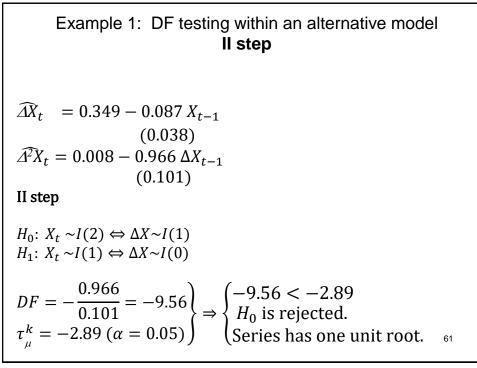












Example 2: ADF testing		
l step: Checking for a unit root	II step: Checking for the second unit root	
$ \begin{array}{l} {\rm H_0:} X_t \sim I(1) \\ {\rm H_1:} X_t \sim I(0) \\ {\it ADF(3)=-2.64} \\ \tau_t^k = -3.46 \\ -2.64 > -3.46 \end{array} $	H ₀ : $\Delta X_t \sim I(1)$ H ₁ : $\Delta X_t \sim I(0)$ ADF(2)=-4.84 -4.84<-3.46	
H_0 is not rejected.	H ₀ is rejected.	
Series has at least one unit root.	First difference is stationary. Cash money has one unit root.	