Lecture 2 Linear time series models

Zorica Mladenović

1

Structure

- Linear process
- Autoregressive models
- AR(1) model
- Moving average models
- MA(1) model
- Examples
- Practical aspects of modelling

3

4

5

ACF for AR(1) model

Model	Stationarity condition	Autocorrelation function (ordinary)
$\mathbf{A R (\mathbf { 1 }) , \mathbf { 0 } < \boldsymbol { \phi } _ { 1 } < \mathbf { 1 }}$	$\left\|\phi_{l}\right\|<1$	$\rho_{l}=\phi_{l}^{l}, l=1,2, \ldots$ It decays exponentially
$\mathbf{A R (\mathbf { 1 }) , \mathbf { - 1 } < \boldsymbol { \phi } _ { 1 } < \mathbf { 0 }}$		$\rho_{l}=\phi_{l}^{l}, l=1,2, \ldots$ It decays exponentially, but reverses sign for each l

PACF for AR(1) model

Model	Additional description	Partial autocorrelation function
$\mathbf{A R}(\mathbf{1}), \mathbf{0}<\boldsymbol{\phi}_{1}<\mathbf{1}$	There is no additional contribution to r_{t} over r_{t-1}	$\phi_{l 1}=\rho_{l}=\phi_{l,}$ $\phi_{l l}=0$, for $l=2,3, \ldots$
$\boldsymbol{A R}(\mathbf{1}), \mathbf{- 1}<\boldsymbol{\phi}_{1}<\mathbf{0}$	$\phi_{l 1}=\rho_{l}=\phi_{l}$, $\phi_{l l}=0$, for $l=2,3, \ldots$	

7

ACF and PACF of AR(p) model

Model	Autocorrelation function	Partial autocorrelation function
$\operatorname{AR}(\mathrm{p})$	It tails off as exponential decay or as damping sine wave.	$\phi_{l 1} \neq 0, \phi_{22} \neq 0, \ldots$, $\phi_{p p}=\phi_{p} \neq 0, \phi_{l l}=0$ for $l>\mathrm{p}$. It cuts off at lag p.

Example: ACF for AR(2) model

Roots of the characteristic equations	Real	Complex
Path of the ACF decay	Exponential	Damping sine wave
	Exponential with changing sign	

9

11

ACF for simple AR and MA models			
Model	Stationarity condition	Autocorrelation function (ordinary)	
White noise, MA(0)	It is always stationary	$\rho_{l}=0, l=1,2, \ldots$	
AR(1), $0<\phi_{1}<1$		$\rho_{l}=\phi_{l}^{l}, l=1,2, \ldots$ It decays exponentially	
AR(1),-1< $\boldsymbol{\phi}_{1}<0$		$\rho_{l}=\phi_{l}^{l}, l=1,2, \ldots$ It decays exponentially, but reverses sign for each	
MA(1), $0<\theta_{1}<1$	It is always stationary	$\begin{aligned} & \rho_{1}=-\theta_{1} /\left(1+\theta_{1}^{2}\right)<0, \\ & \rho_{l}=0, \text { for } l=2,3, \ldots \end{aligned}$	
MA(1), $\mathbf{- 1 < \theta _ { 1 } < 0}$		$\begin{aligned} & \rho_{1}=-\theta_{1} /\left(1+\theta_{1}{ }^{2}\right)>0, \\ & \rho_{l}=0, \text { for } l=2,3, \ldots \end{aligned}$	13

13

PACF for simple AR and MA models

Model	Additional description	Partial autocorrelation function
White noise, MA(0)	Uncorrelated process	$\phi_{l l}=0, l=1,2, \ldots$
$\operatorname{AR}(1), 0<\phi_{1}<1$	There is no additional contribution to r_{t} over r_{t-1}	$\begin{aligned} & \phi_{11}=\rho_{l}=\phi_{1} \\ & \phi_{l l}=0, \text { for } l=2,3, \ldots \end{aligned}$
AR(1), $\mathbf{- 1 < \phi _ { 1 } < 0}$		$\begin{aligned} & \phi_{11}=\rho_{l}=\phi_{p} \\ & \phi_{l l}=0, \text { for } l=2,3, \ldots \end{aligned}$
$\mathrm{MA}(1), 0<\theta_{1}<1$	It has AR representation of infinity order.	Values are negative and decay in absolute value.
MA(1), $\mathbf{- 1}<\theta_{1}<0$		Values are changing sign each lag and decay in absolute value.

ACF and PACF of AR(p) and MA(q) models		
Model	Autocorrelation function	Partial autocorrelation function
AR(p)	It tails off as exponential decay or as damping sine wave.	$\phi_{11} \neq 0, \phi_{22} \neq 0, \ldots$, $\phi_{\mathrm{pp}}=\phi_{\mathrm{p}} \neq 0, \phi_{l l}=0$ for $l>\mathrm{p}$. It cuts off at lag p.
MA(q)	$\rho_{1} \neq 0, \rho_{2} \neq 0, \ldots, \rho_{\mathrm{q}} \neq 0$, $\rho_{l=0}=0$ for $l>\mathrm{q}$. It cuts off at lag q.	It tails off as exponential decay or as damping sine wave.

15

The application of ACF and PACF in empirical work

Model	Useful tool in specifying the order
$\operatorname{AR}(\mathrm{p})$	PACF function It cuts off at lag p.
$\mathrm{MA}(\mathrm{q})$	ACF function It cuts off at lag q.

- For individual work:
-AR (2)
-MA (2)
-ARMA(1,1)

17

- Exercise, Eviews
- ACF and PACF of generated data
- How to generate data? Example for MA(1)

19

LINEAR PROCESS (LINEAR TIME SERIES)

A fundamental theorem in the analysis of stationary time series: Wold' s decomposition theorem
(Wold - Scandinavian statistician, 1910-1992, result from 1938)
We start with:

$$
r_{t}=D+S
$$

D - Deterministic component (μ).
S - Stochastic component.

This theorem deals with S.

Wold' s decomposition theorem:

Stochastic component of every weakly stationary times series r_{t} has the following form:

$$
S=r_{t}-\mu=a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\ldots=\sum_{j=0}^{\infty} \psi_{j} a_{t-j}, \psi_{0}=1
$$

which is defined as a linear process or a linear time series.
$\psi_{1}, \psi_{2}, \ldots$ are ψ - weights.

$$
E\left(a_{t}\right)=0 \quad \gamma_{l}=\left\{\begin{array}{l}
\sigma_{a}^{2}, l=0 \\
0, l \neq 0
\end{array} \quad \rho_{l}=\left\{\begin{array}{l}
1, l=0 \\
0, l \neq 0
\end{array}\right.\right.
$$

- White noise represents a random shock/unanticipated shock - impulse.
- Linear process is also impulse response function.
- Using L we get:
$r_{t}-\mu=a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\ldots=\underbrace{\left(1+\psi_{1} L+\psi_{2} L^{2}+\ldots\right)}_{\Psi(L)} a_{t}=\Psi(L) a_{t}$.
- Linear process is also linear filter representation.

$$
\begin{aligned}
& E\left(r_{t}\right)=\mu . \\
& \operatorname{var}\left(r_{t}\right)=E\left(r_{t}-\mu\right)^{2}=E\left(a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\ldots\right)^{2} \\
& =\underbrace{E\left(a_{t}^{2}\right)}_{\sigma_{a}^{2}}+\psi_{1}^{2} \underbrace{E\left(a_{t-1}^{2}\right)}_{\sigma_{a}^{2}}+\psi_{2}^{2} \underbrace{E\left(a_{t-2}^{2}\right)}_{\sigma_{a}^{2}}+\ldots \\
& +2 \psi_{1} \underbrace{E\left(a_{t} a_{t-1}\right)}_{0}+2 \psi_{2} \underbrace{E\left(a_{t} a_{t-2}\right)}_{0}+\ldots \\
& =\sigma_{a}^{2}\left(1+\psi_{1}^{2}+\psi_{2}^{2}+\ldots\right) \\
& =\sigma_{a}^{2} \sum_{i=0}^{\infty} \psi_{i}^{2} . \\
& \gamma_{l}=E\left(r_{t}-\mu\right)\left(r_{t-l}-\mu\right) \\
& =E\left(a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\ldots\right) \\
& \cdot\left(a_{t-l}+\psi_{1} a_{t-l-1}+\psi_{2} a_{t-l-2}+\ldots\right) \\
& =E\left(a_{t}+\psi_{1} a_{t-1}+\ldots+\psi_{l} a_{t-l}+\psi_{l+1} a_{t-l-1}+\psi_{l+2} a_{t-l-2}+\ldots\right) \\
& \cdot\left(a_{t-l}+\psi_{1} a_{t-l-1}+\psi_{2} a_{t-l-2}+\ldots\right) \\
& =\sigma_{a}^{2}\left(\psi_{l}+\psi_{1} \psi_{l+1}+\psi_{2} \psi_{l+2}+\ldots\right) \\
& =\sigma_{a}^{2} \sum_{i=0}^{\infty} \psi_{i} \psi_{l+i} . \\
& \rho_{l}=\frac{\gamma_{l}}{\gamma_{0}}=\frac{\sum_{i=0}^{\infty} \psi_{i} \psi_{l+i}}{\sum_{i=0}^{\infty} \psi_{i}^{2}} .
\end{aligned}
$$

Conclusions:

1. Variance of linear process depends on variance of white noise and on ψ weights. It is finite for: $\sum_{i=0}^{\infty} \psi_{i}^{2}<\infty\left(\sum_{i=0}^{\infty}\left|\psi_{i}\right|<\infty\right)$.
2. The lag-l autocovariance depends on variance of white noise and on ψ weights.
3. The lag-l autocorrelation depends on ψ - weights only.

There are three classes of weakly stationary time series:

- Autoregressive models ($A R$)
- Moving average models (MA)
- Autoregressive moving average models ($A R M A$)

AUTOREGRESSIVE MODELS

General remarks

Autoregressive model of order $p, A R(p)$ model, is defined as follows:

$$
\begin{aligned}
& r_{t}=\phi_{0}+\phi_{1} r_{t-1}+\phi_{2} r_{t-2}+\ldots+\phi_{p} r_{t-p}+a_{t} \\
& r_{t}-\phi_{1} r_{t-1}-\phi_{2} r_{t-2}-\ldots-\phi_{p} r_{t-p}=\phi_{0}+a_{t}
\end{aligned}
$$

$\phi_{0}, \phi_{1}, \phi_{2}, \ldots, \phi_{p}$ are parameters, and a_{t} is white noise.

This representation is a stochastic difference equation of order p.
There is characteristic polynomial equation of order p that can be assigned to a stochastic difference equation of order p :

$$
g^{p}-\phi_{1} g^{p-1}-\phi_{2} g^{p-2}-\ldots-\phi_{p}=0
$$

where $g_{1}, g_{2}, \ldots, g_{p}$ are solutions/roots of the charasteristic equation.

Stationarity of time series defined by $\operatorname{AR}(p)$ model is determined by the solutions $g_{1}, g_{2}, \ldots, g_{p}$.

For example: $\mathrm{AR}(2)$

$$
\begin{gathered}
r_{t}=\phi_{1} r_{t-1}+\phi_{2} r_{t-2}+a_{t} \\
r_{t}-\phi_{1} r_{t-1}-\phi_{2} r_{t-2}=a_{t} \\
g^{2}-\phi_{1} g-\phi_{2}=0 .
\end{gathered}
$$

The following theorem holds:

1. If all roots $g_{1}, g_{2}, \ldots, g_{p}$ are less than one in modulus, then time series is stationary.
2. If there exists a root $g_{i}, i=1,2, \ldots, p$, that is equal to one in modulus, whereas other roots are less than one in modulus, then time series is nonstationary. This is unit root time series.

- Root equals to 1 represents ordinary unit root, or just unit root. This type of nonstationarity is eliminated by the application of the first order difference.
- The number of unit roots is equal to the number of differencing needed to achieve stationarity.
- Root equals to -1 represents seasonal unit root. This type of nonstationarity is eliminated by the application of the seasonal difference.

3. If there exists a root $g_{i}, i=1,2, \ldots, p$, greater than one, whereas other roots are less than one in modulus, then time series is explosive.

- This type of nonstationarity is not eliminated by differencing.

EXAMPLE:

Show that time series given as $A R(3)$ model: $r_{t}=r_{t-1}+c r_{t-2}-c r_{t-3}+a_{t}$, $c=$ const, has at least one unit root.

$$
\begin{aligned}
& r_{t}=r_{t-1}+c r_{t-2}-c r_{t-3}+a_{t} \\
& r_{t}-r_{t-1}-c r_{t-2}+c r_{t-3}=a_{t} \\
& g^{3}-g^{2}-c g+c=0 \\
& g^{2}(g-1)-c(g-1)=0 \\
& \left(g^{2}-c\right)(g-1)=0 \Longrightarrow g_{1}=1, g_{2 / 3}= \pm \sqrt{c}
\end{aligned}
$$

If we divide characteristic polynomial equation through by g^{p}, we get

$$
\begin{gathered}
g^{p}-\phi_{1} g^{p-1}-\phi_{2} g^{p-2}-\ldots-\phi_{p}=0 /: g^{p} \\
1-\phi_{1} \frac{1}{g}-\phi_{2} \frac{1}{g^{2}}-\ldots-\phi_{p} \frac{1}{g^{p}}=0
\end{gathered}
$$

For $x=\frac{1}{g}$, the new equation is reached:

$$
1-\phi_{1} x-\phi_{2} x^{2}-\ldots-\phi_{p} x^{p}=0
$$

New roots are: $x_{1}, x_{2}, \ldots, x_{p}$.

Stationarity condition becomes:

$$
\left|g_{i}\right|<1 \Longrightarrow\left|x_{i}\right|>1, \quad i=1,2 \ldots, p
$$

Autoregressive model of order one

Autoregressive model of order one, $A R(1)$, is given as:

$$
r_{t}=\phi_{0}+\phi_{1} r_{t-1}+a_{t}
$$

and ϕ_{1} is autoregresive parameter.

Key topics:

- Alternative representation concerning the mean value
- Stationarity condition
- Special case of linear process
- Autocovariance function
- Autocorrelation function (ordinary)
- Partial autocorrelation function

1. Alternative representation concerning the mean value

$$
\begin{gathered}
r_{t}=\phi_{0}+\phi_{1} r_{t-1}+a_{t} \\
\underbrace{E\left(r_{t}\right)}_{\mu}=\phi_{0}+\phi_{1} \underbrace{E\left(r_{t-1}\right.}_{\mu})+\underbrace{E\left(a_{t}\right)}_{0} \\
\mu=\phi_{0}+\phi_{1} \mu \Longrightarrow \mu=\frac{\phi_{0}}{1-\phi_{1}} \Longrightarrow \phi_{0}=\mu\left(1-\phi_{1}\right) \\
\left(r_{t}-\mu\right)=\phi_{1}\left(r_{t-1}-\mu\right)+a_{t}
\end{gathered}
$$

2. Stationarity condition

$$
\begin{aligned}
r_{t}-\mu & =\phi_{1}\left(r_{t-1}-\mu\right)+a_{t} \\
r_{t}-\mu & =\phi_{1}\left[\phi_{1}\left(r_{t-2}-\mu\right]+a_{t-1}\right)+a_{t} \\
& =\phi_{1}^{2}\left(r_{t-2}-\mu\right)+\phi_{1} a_{t-1}+a_{t} \\
& =\phi_{1}^{2}\left[\phi_{1}\left(r_{t-3}-\mu\right)+a_{t-2}\right]+a_{t}+\phi_{1} a_{t-1} \\
& =\ldots \\
& =a_{t}+\phi_{1} a_{t-1}+\phi_{1}^{2} a_{t-2}+\phi_{1}^{3} a_{t-3}+\ldots
\end{aligned}
$$

Note:

$$
\begin{aligned}
r_{t}-\mu & =\phi_{1}\left(r_{t-1}-\mu\right)+a_{t} \\
r_{t-1}-\mu & =\phi_{1}\left(r_{t-2}-\mu\right)+a_{t-1} \\
r_{t-2}-\mu & =\phi_{1}\left(r_{t-3}-\mu\right)+a_{t-2}, \quad \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{var}\left(r_{t}\right)=E\left(r_{t}-\mu\right)^{2} \\
& \operatorname{var}\left(r_{t}\right)=E\left(a_{t}+\phi_{1} a_{t-1}+\phi_{1}^{2} a_{t-2}+\phi_{1}^{3} a_{t-3}+\ldots\right)^{2} \\
&=\sigma_{a}^{2}\left(1+\phi_{1}^{2}+\phi_{1}^{4}+\phi_{1}^{6}+\ldots\right) \\
& \sigma_{a}^{2}=\operatorname{var}\left(a_{t}\right)=E\left(a_{t}^{2}\right) .
\end{aligned}
$$

Variance is finite only if $\left|\phi_{1}\right|<1$. Under this condition:

$$
\operatorname{var}\left(r_{t}\right)=\sigma_{a}^{2}\left(1+\phi_{1}^{2}+\phi_{1}^{4}+\phi_{1}^{6}+\ldots\right)=\frac{\sigma_{a}^{2}}{1-\phi_{1}^{2}}
$$

2a. Stationarity condition - given the general condition

$$
\begin{aligned}
& r_{t}=\phi_{1} r_{t-1}+a_{t} \\
& r_{t}-\phi_{1} r_{t-1}=a_{t} \\
& g-\phi_{1}=0 \Longrightarrow g=\phi_{1} \\
& |g|<1 \Longrightarrow\left|\phi_{1}\right|<1
\end{aligned}
$$

3. $A R(1)$ model is a linear process

We have just shown that $A R(1)$ model can be written as:

$$
\begin{gathered}
r_{t}-\mu=a_{t}+\phi_{1} a_{t-1}+\phi_{1}^{2} a_{t-2}+\phi_{1}^{3} a_{t-3}+\ldots \\
r_{t}-\mu=a_{t}+\underbrace{\phi_{1}}_{\psi_{1}} a_{t-1}+\underbrace{\phi_{1}^{2}}_{\psi_{2}} a_{t-2}+\underbrace{\phi_{1}^{3}}_{\psi_{3}} a_{t-3}+\ldots
\end{gathered}
$$

This is a linear model representation.

Conclusion:

$A R(1)$ model is a special case of a linear process for $\left|\phi_{1}\right|<1$:

$$
\psi_{j}=\phi_{1}^{j}, j=1,2, \text { etc. }
$$

4. Autocovariance

The lag- l autocovariance is:

$$
\gamma_{l}=E\left(r_{t}-\mu\right)\left(r_{t-l}-\mu\right), \quad l=1,2, \ldots
$$

Model:

$$
r_{t}-\mu=\phi_{1}\left(r_{t-1}-\mu\right)+a_{t}
$$

We multiply by $\left(r_{t-l}-\mu\right)$

$$
\left(r_{t}-\mu\right)\left(r_{t-l}-\mu\right)=\phi_{1}\left(r_{t-1}-\mu\right)\left(r_{t-l}-\mu\right)+a_{t}\left(r_{t-l}-\mu\right)
$$

and take expectations:

$$
\begin{gathered}
E\left(r_{t}-\mu\right)\left(r_{t-l}-\mu\right)=\phi_{1} E\left(r_{t-1}-\mu\right)\left(r_{t-l}-\mu\right)+E\left(a_{t}\left(r_{t-l}-\mu\right)\right) \\
\underbrace{E\left(r_{t}-\mu\right)\left(r_{t-l}-\mu\right)}_{\gamma_{l}}=\phi_{1} \underbrace{E\left(r_{t-1}-\mu\right)\left(r_{t-l}-\mu\right)}_{\gamma_{l-1}}+E\left(a_{t}\left(r_{t-l}-\mu\right)\right) \\
\gamma_{l}=\phi_{1} \gamma_{l-1}+E\left(a_{t}\left(r_{t-l}-\mu\right)\right) .
\end{gathered}
$$

$$
\gamma_{l}=\phi_{1} \gamma_{l-1}+E\left(a_{t}\left(r_{t-l}-\mu\right)\right) .
$$

There is a term $E\left(a_{t}\left(r_{t-l}-\mu\right)\right)$:

$$
\begin{gathered}
E\left(a_{t}\left(r_{t-l}-\mu\right)\right)= \begin{cases}\sigma_{a}^{2}, & l=0 \\
0, & l \neq 0\end{cases} \\
l=0, E\left(a_{t}\left(r_{t-l}-\mu\right)\right)=E\left(a_{t}\left(r_{t}-\mu\right)\right)=E\left(a_{t}\left(a_{t}+\phi_{1} a_{t-1}+\phi_{1}^{2} a_{t-2}+\ldots\right)\right)=\sigma_{a}^{2} \\
l=1, E\left(a_{t}\left(r_{t-l}-\mu\right)\right)=E\left(a_{t}\left(r_{t-1}-\mu\right)\right)=E\left(a_{t}\left(a_{t-1}+\phi_{1} a_{t-2}+\phi_{1}^{2} a_{t-3}+\ldots\right)\right)=0 \\
l=2,3, \ldots, \quad E\left(a_{t}\left(r_{t-l}-\mu\right)\right)=0
\end{gathered}
$$

Finally:

$$
\gamma_{l}= \begin{cases}\phi_{1} \gamma_{l-1}+\sigma_{a}^{2}, & l=0 \\ \phi_{1} \gamma_{l-1}, & l \neq 0\end{cases}
$$

The following holds:

$$
\begin{aligned}
& l=0, \gamma_{0}=\phi_{1} \gamma_{1}+\sigma_{a}^{2} \\
& l=1, \gamma_{1}=\phi_{1} \gamma_{0}
\end{aligned}
$$

so that variance is again: $\gamma_{0}=\frac{\sigma_{a}^{2}}{1-\phi_{1}^{2}}$.

For $l>0$, autocovariance is:

$$
\gamma_{l}=\phi_{1} \gamma_{l-1}
$$

and

$$
\gamma_{l}=\phi_{1} \underbrace{\gamma_{l-1}}_{\phi_{1} \gamma_{l-2}}=\phi_{1}^{2} \underbrace{\gamma_{l-2}}_{\phi_{1} \gamma_{l-3}}=\ldots=\phi_{1}^{l} \gamma_{0}=\frac{\phi_{1}^{l} \sigma_{a}^{2}}{1-\phi_{1}^{2}}
$$

5. Autocorrelation function (ordinary)

The lag-l autocorrelation coefficient, ρ_{l}, is

$$
\rho_{l}=\frac{\gamma_{l}}{\gamma_{0}}
$$

Previously we derive:
$\diamond \operatorname{var}\left(r_{t}\right)=\gamma_{0}=\frac{\sigma_{a}^{2}}{1-\phi_{1}^{2}}$.
$\diamond \gamma_{l}=\frac{\phi_{1}^{l} \sigma_{a}^{2}}{1-\phi_{1}^{2}}$.

Therefore:

$$
\rho_{l}=\frac{\gamma_{l}}{\gamma_{0}}=\frac{\frac{\sigma_{a}^{2} \phi_{1}^{l}}{1-\phi_{1}^{2}}}{\frac{\sigma_{a}^{2}}{1-\phi_{1}^{2}}}=\phi_{1}^{l} .
$$

Autocorrelation function (ordinary) is:

$$
\rho_{l}=\phi_{1}^{l}, \quad l=1,2, \ldots
$$

$$
\rho_{1}=\phi_{1}, \rho_{2}=\phi_{1}^{2}, \rho_{3}=\phi_{1}^{3}, \ldots
$$

- If autocorrelation is positive $\left(0<\phi_{1}<1\right)$, then ACF decays exponentially (,,,$+++ \ldots$).
- If autocorrelation is negative ($-1<\phi_{1}<0$), then ACF decays exponentially and it oscillates in sign for each lag $(-,+,-, \ldots)$.

6. Partial autocorrelation function

The lag-l autocorrelation coefficient:
It measures correlation between r_{t-l} and r_{t}

$$
\rho_{l}=\frac{\operatorname{cov}\left(r_{t}, r_{t-l}\right)}{\sqrt{\operatorname{var}\left(r_{t}\right) \operatorname{var}\left(r_{t-l}\right)}}=\frac{\operatorname{cov}\left(r_{t}, r_{t-l}\right)}{\operatorname{var}\left(r_{t}\right)} .
$$

However, this measure of correlation between r_{t-l} and r_{t}, can be influenced by intermediate variables between t and $t-l,\left(r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}\right)$.

- Adjusting for the effects of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ makes new correlation coefficient between r_{t} and r_{t-l}.
- This is a lag-l partial autocorrelation coefficient.
- It is denoted as $\phi_{l l}$ or $\phi_{l, l}$.
- Sequence $\phi_{11}, \phi_{22}, \ldots$ is partial autocorrelation function,
- Partial correlogram is graphical representation.
- Notation: PACF.
- There are two approaches in defining PACF.

1. Regression analysis approach

We need to eliminate the impact of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ from r_{t} and r_{t-l}. The following two regressions are estimated by the OLS:

1. Regression of r_{t} on $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ gives estimated value \widehat{r}_{t}, and residual series, $\left(r_{t}-\widehat{r}_{t}\right)$

- This is r_{t} corrected for the influence of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$.

2. Regression of r_{t-l} on $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ gives estimated value \widehat{r}_{t-l}, and residual series, $\left(r_{t-l}-\widehat{r}_{t-l}\right)$.

- This is r_{t-l} corrected for the influence of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$.

The lag-l partial autocorrelation coefficient, $\phi_{l l}$, is definined as lag-l ordinary autocorrelation coefficient between $\left(r_{t}-\widehat{r}_{t}\right) \mathrm{i}\left(r_{t-l}-\widehat{r}_{t-l}\right)$:

$$
\phi_{l l}=\frac{\operatorname{cov}\left(\left(r_{t}-\widehat{r}_{t}\right),\left(r_{t-l}-\widehat{r}_{t-l}\right)\right)}{\sqrt{\operatorname{var}\left(r_{t}-\widehat{r}_{t}\right) \operatorname{var}\left(r_{t-l}-\widehat{r}_{t-l}\right)}}, l=2,3 \ldots .
$$

2. Time series approach

We consider the following AR models in consecutive order:

$$
\begin{aligned}
& r_{t}=\phi_{01}+\phi_{11} r_{t-1}+a_{1 t} \\
& r_{t}=\phi_{02}+\phi_{11} r_{t-1}+\phi_{22} r_{t-2}+a_{2 t} \\
& r_{t}=\phi_{03}+\phi_{11} r_{t-1}+\phi_{22} r_{t-2}+\phi_{33} r_{t-3}+a_{3 t} \\
& \\
& \vdots \\
& r_{t}=\phi_{0 l}+\phi_{11} r_{t-1}+\phi_{22} r_{t-2}+\phi_{33} r_{t-3}+\ldots+\phi_{l l} r_{t-l}+a_{l t}
\end{aligned}
$$

- "The true" correlation between r_{t} and $r_{t-1}: \phi_{11}$ in the first model.
- "The true" correlation between r_{t} and r_{t-2} upon corrected for the effect of $r_{t-1}: \phi_{22}$ in the second model.
- "The true" correlation between r_{t} and r_{t-3} upon corrected for the effects of r_{t-1} and $r_{t-2}: \phi_{33}$ in the third model.
-
- The lag-l partial autocorrelation coefficient $\left(\phi_{l l}\right)$ is the last autoregressive parameter in $A R(l)$ model.

Why? Multiple regression model contains partial slope coefficients. They measure influence of a given explanatory variable on dependent variable upon controlling for the effect of the rest of the explanatory variables.

PACF based on ACF

Partial autocorrelation coefficient at a given lag can always be defined as a function of ordinary autocorrelation coefficients.

The lag-1 partial autocorrelation coefficient:

$$
\phi_{11}=\rho_{1} .
$$

The lag-2 partial autocorrelation coefficient:

$$
\phi_{22}=\frac{\operatorname{cov}\left[\left(r_{t}-\widehat{r}_{t}\right),\left(r_{t-2}-\widehat{r}_{t-2}\right)\right]}{\sqrt{\operatorname{var}\left(r_{t}-\widehat{r}_{t}\right) \operatorname{var}\left(r_{t-2}-\widehat{r}_{t-2}\right)}}
$$

- Estimate \widehat{r}_{t} that accounts for $r_{t-1}: \widehat{r}_{t}=\rho_{1} r_{t-1}$.
- Estimate \widehat{r}_{t-2} that accounts for $r_{t-1}: \widehat{r}_{t-2}=\rho_{1} r_{t-1}$.

$$
\begin{gathered}
\phi_{22}=\frac{\operatorname{cov}\left[\left(r_{t}-\rho_{1} r_{t-1}\right),\left(r_{t-2}-\rho_{1} r_{t-1}\right)\right]}{\sqrt{\operatorname{var}\left(r_{t}-\rho_{1} r_{t-1}\right) \operatorname{var}\left(r_{t-2}-\rho_{1} r_{t-1}\right)}} \\
\phi_{22}=\frac{\gamma_{2}-\rho_{1} \gamma_{1}-\rho_{1} \gamma_{1}+\rho_{1}^{2} \gamma_{0}}{\sqrt{\left(\gamma_{0}-2 \rho_{1} \gamma_{1}+\rho_{1}^{2} \gamma_{0}\right)^{2}}} \\
\rho_{1}=\frac{\gamma_{1}}{\gamma_{0}}, \quad \rho_{2}=\frac{\gamma_{2}}{\gamma_{0}} \\
\phi_{22}=\frac{\gamma_{0}\left(\rho_{2}-2 \rho_{1}^{2}+\rho_{1}^{2}\right)}{\gamma_{0}\left(1-2 \rho_{1}^{2}+\rho_{1}^{2}\right)} \\
\phi_{22}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}
\end{gathered}
$$

PACF in AR(1) model $\left(\rho_{l}=\phi_{1}^{l}, l=1,2, \ldots\right)$

$$
\begin{gathered}
\phi_{11}=\rho_{1}=\phi_{1} \\
\phi_{22}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}=\frac{\phi_{1}^{2}-\phi_{1}^{2}}{1-\phi_{1}^{2}}=0 \\
\phi_{33}=\phi_{44}=\ldots=0
\end{gathered}
$$

For all lags >1 :
$\phi_{l l}=0, l>1$.

Sample estimate of PACF

- It is based on the estimate of ordinary ACF.
- The sequence $\widehat{\phi}_{11}, \widehat{\phi}_{22}, \ldots$ represents sample partial autocorrelation function, with sample partial correlogram being graphical representation.
- Notation: SPACF.
- Estimate $\widehat{\phi}_{l l}$ is consistent under general conditions.
- If time series is stationary iid sequence of random variables, then

$$
\widehat{\phi}_{l l}: A N\left(0, \frac{1}{T}\right) .
$$

- The same statistical procedure as with ordinary ACF is followed to test for the partial autocorrelation at the given lag.

$$
H_{0}: \phi_{l l}=0, \quad H_{1}: \phi_{l l} \neq 0, \quad\left(\pm 1.96 \frac{1}{\sqrt{T}}\right), l=1,2, \ldots
$$

MOVING AVERAGE MODELS

Moving average model of order $q, M A(q)$, is of the following form:

$$
r_{t}=c_{0}+a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q}
$$

Model parameters are: $c_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{q}$.

Time series given by MA model is always weakly stationary

$$
\begin{aligned}
\operatorname{var}\left(r_{t}\right) & =E\left(r_{t}-c_{0}\right)^{2} \\
& =E\left(a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q}\right)^{2} \\
& =\sigma_{a}^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}+\ldots+\theta_{q}^{2}\right)<\infty
\end{aligned}
$$

Linear process:

$$
r_{t}-\mu=a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\ldots
$$

Under the following conditions:
$\psi_{1}=-\theta_{1}, \psi_{2}=-\theta_{2}, \ldots, \psi_{q}=-\theta_{q}, \psi_{j}=0, j>q$,
$M A(q)$ model is linear process.

Linear process in general is also denoted as $M A(\infty)$.

Moving average model of order one

This model, MA(1) model, is:

$$
r_{t}=c_{0}+a_{t}-\theta_{1} a_{t-1}
$$

$E\left(r_{t}\right)=c_{0}$.

Key topics:

- Autocovariance function
- Autocorrelation function (ordinary)
- Invertibility condition
- Partial autocorrelation function

1. Autocovariance function

$$
\begin{gathered}
\gamma_{l}=E\left(r_{t}-c_{0}\right)\left(r_{t-l}-c_{0}\right)=E\left(a_{t}-\theta_{1} a_{t-1}\right)\left(a_{t-l}-\theta_{1} a_{t-l-1}\right) \\
\gamma_{l}= \begin{cases}\left(1+\theta_{1}^{2}\right) \sigma_{a}^{2}, & l=0 \\
-\theta_{1} \sigma_{a}^{2}, & l=1 \\
0, & l>1\end{cases}
\end{gathered}
$$

2. Ordinary autocorrelation function

$$
\rho_{l}=\frac{\gamma_{l}}{\gamma_{0}}= \begin{cases}1, & l=0 \\ -\frac{\theta_{1}}{1+\theta_{1}^{2}}, & l=1 \\ 0, & l>1\end{cases}
$$

- ACF cuts off at lag 1 . Only non-zero value is for $l=1$.
- Values of ACF are zero for lags greater than order $q=1$.

Two relevant properties of $A C F$ (for exercise):

1. There are two different $M A(1)$ models with the same ACF.
2. $\rho_{1} \in(\pm 0.5)$.
3. Invertibility condition

From $M A(1)$ model, a_{t} is:

$$
r_{t}=a_{t}-\theta_{1} a_{t-1} \Longrightarrow a_{t}=r_{t}+\theta_{1} a_{t-1}
$$

Also:

$$
\begin{aligned}
& a_{t-1}=r_{t-1}+\theta_{1} a_{t-2} \\
& a_{t-2}=r_{t-2}+\theta_{1} a_{t-3} \\
& \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
r_{t} & =a_{t}-\theta_{1} a_{t-1} \\
& =a_{t}-\theta_{1}\left(r_{t-1}+\theta_{1} a_{t-2}\right) \\
& =-\theta_{1} r_{t-1}-\theta_{1}^{2}\left(r_{t-2}+\theta_{1} a_{t-3}\right)+a_{t} \\
& =\ldots \\
& =-\theta_{1} r_{t-1}-\theta_{1}^{2} r_{t-2}-\theta_{1}^{3} r_{t-3}-\ldots+a_{t} .
\end{aligned}
$$

For: $\pi_{j}=-\theta_{1}^{j}, j=1,2, \ldots$ we get $A R(\infty)$ representation:

$$
r_{t}=\pi_{1} r_{t-1}+\pi_{2} r_{t-2}+\pi_{3} r_{t-3}-\ldots+a_{t}
$$

- What is condition for stationarity of $A R(\infty)$ representation?
- Answer: Given how π-weights are introduced, we conclude: $\left|\theta_{1}\right|<1$.
- This is an invertibility condition that associates MA and AR models.

3. Invertibility condition - additionally

$$
r_{t}=a_{t}-\theta_{1} a_{t-1} \Longrightarrow r_{t}=\left(1-\theta_{1} L\right) a_{t} \Longrightarrow \frac{1}{\left(1-\theta_{1} L\right)} r_{t}=a_{t}
$$

Invertibility condition, $\left|\theta_{1}\right|<1$, enables following form of $\frac{1}{\left(1-\theta_{1} L\right)}$:

$$
\frac{1}{\left(1-\theta_{1} L\right)}=\left(1+\theta_{1} L+\theta_{1}^{2} L^{2}+\theta_{1}^{3} L^{3}+\ldots\right)
$$

$A R(\infty)$ model is reached:

$$
\begin{gathered}
\frac{1}{\left(1-\theta_{1} L\right)} r_{t}=a_{t} \Longrightarrow\left(1+\theta_{1} L+\theta_{1}^{2} L^{2}+\theta_{1}^{3} L^{3}+\ldots\right) r_{t}=a_{t} \\
r_{t}=-\theta_{1} r_{t-1}-\theta_{1}^{2} r_{t-2}-\theta_{1}^{3} r_{t-3}-\ldots+a_{t} .
\end{gathered}
$$

4. Partial autocorrelation function

- PACF of $M A(1)$ tails off for many lags (proof is skipped).
- This is due to:
- $M A(1) \Longrightarrow A R(\infty)$
- Basic idea of PACF is derived from $A R$ model: $\phi_{l l}$ is the last autoregressive parameter in $A R(l)$ model.
- If $\theta_{1}>0$ (negative autocorrelation), PACF has all negative values, and it decays exponentially (in absolute value).
- If $\theta_{1}<0$ (positive autocorrelation), PACF alternates sign for each lag starting with positive value and it decays exponentially (in absolute value).
- Factor that controls the decay of $\phi_{l l}$ is $-\theta_{1}^{l}$.

Practical aspects of ARMA modelling

Zorica Mladenović

Building ARMA models The Box - Jenkins modelling approach Box and Jenkins (1976)

- British statisticians
- G.E.P. Box (1919-2013) and G.M. Jenkins (1933-1982)
- The purpose of the procedure is to find out the model that describes time series satisfactory well.
- Modeling framework: ARMA(p, q) models:
$r_{t}=\phi_{1} r_{t-1}+\phi_{2} r_{t-2}+\ldots+\phi_{p} r_{t-p}+a_{t}-\theta_{l} a_{t-1}-\theta_{2} a_{t-2}-\ldots-\theta_{q} a_{t-q}$
- Box: "All models are wrong, but some of them are useful".

Building ARMA models The Box - Jenkins modelling approach

- It is an iterative procedure that is consisted of the following steps:
- Identification of the model
- Estimation of the model
- Model (diagnostic) checking

Three steps of the Box - Jenkins approach
From Box, Jenkins, Reinsel and Ljung (2015):

1. Identification of the model

We use the data to suggest a subclass of parsimonious models worthy to be entertained.
2. Estimation of the model

We use the data to make inferences about the parameters
3. Model checking

We check the fitted model in its relation to the data with intent to reveal model inadequacies and to achieve model improvement.

1. Identification of the model

- Main goal: The values p and q should be determined
- Main principle: parsimony (keep it simple)
- Main methodological framework:
- Plot data over time
- Compute and examine SACF and SPACF

5

Model	ACF	PACF
AR(p)	It tails off as exponential decay or as damping sine wave.	$\phi_{11} \neq 0, \phi_{22} \neq 0, \ldots, \phi_{\mathrm{pp}}=\phi_{\mathrm{p}}$, $\phi_{l l}=0$ for $l>\mathrm{p}$. It cuts off at lag p.
$\mathbf{M A (q)}$	$\rho_{1} \neq 0, \rho_{2} \neq 0, \ldots, \rho_{\mathrm{q}} \neq 0$, $\rho_{l}=0$ for $l>\mathrm{q}$. It cuts off at lag q.	It tails off as exponential decay or as damping sine wave.
ARMA $(\mathbf{p , q)}$	It tails off. The first q values are determined by AR and MA parameters. For lags greater than q coefficients behave as in AR model.	It tails off. The first p values are determined by AR and MA parameters. For lags greater than p coefficients behave as in MA model.

2. Estimation of the parameters

- Can we use the ordinary least squares method (OLS)? Yes, but only in AR models.
- Parameters of MA and ARMA models cannot be estimated by OLS. Why?
- MA(1) is equivalent to $\operatorname{AR}(\infty)$:
$r_{t}=a_{t}-\theta_{1} a_{t-1}, a_{t}=r_{t}+\theta_{1} a_{t-1}, a_{t-1}=r_{t-1}+\theta_{1} a_{t-2}$
$r_{t}=a_{t}-\theta_{1} a_{t-1}=a_{t}-\theta_{1}\left(r_{t-1}+\theta_{1} a_{t-2}\right)$
$=-\theta_{1} r_{t-1}-\theta_{1}^{2} a_{t-2}+a_{t}=\ldots=-\theta_{1} r_{t-1}-\theta_{1}^{2} r_{t-2}-\theta_{1}^{3} r_{t-3} \ldots+a_{t}$.
Parameter enters the model non-linearly.
- The method of non-linear least squares is followed and it based on the application of optimization procedures.

7

3. Model checking

- Main question: Can we assume that what has not been explained by the model is random component?
- Main question asked differently:
- Are the residuals (part of the variable that is left unexplained by the model)
- noncorrelated?
- normally distributed?
- Is the choice of p and q optimal?

3. Model checking: methodological framework (I)

3.1. Residual diagnostics for autocorrelation

- Is there autocorrelation at certain lag $/$? ($\mathrm{H}_{0}: \rho_{\mathrm{l}}=0$)
- Is there autocorrelation up to order m ?
$\left(H_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{m}=0\right)$.

Is there autocorrelation at certain lag $I ?$
 $\left(H_{0}: \rho_{1}=0\right)$

- Validity of the hypothesis $H_{0}: \rho_{l}=0$ is tested against the alternative $H_{1}: \rho \neq 0$ by checking whether estimator of the lag-/ autocorrelation coefficient is an element of the interval [-1.96/ل $\mathrm{T}, 1.96 / \sqrt{ } \mathrm{T}]$.
- Null hypothesis cannot be rejected if:

$$
\hat{\rho}_{l} \in[-1.96 / \sqrt{T}, 1.96 / \sqrt{T}]
$$

- Null hypothesis is rejected at the 5% significance level if

$$
\hat{\rho}_{l} \notin[-1.96 / \sqrt{T}, 1.96 / \sqrt{T}]
$$

Is there autocorrelation up to order \boldsymbol{m} ?
 $\left(H_{0}: \rho_{1}=\rho_{2}=\ldots=\rho_{m}=0\right)$

- Box-Pierce and Box-Ljung test statistics are applied on the residuals:

$$
\begin{aligned}
& Q^{*}(m)=B P(m)=T \sum_{l=1}^{m} \hat{\rho}_{l}^{2}: \chi_{m-p-q}^{2} \\
& Q(m)=B L j(m) \\
& =T(T+2) \sum_{l=1}^{m} \frac{\hat{\rho}_{l}^{2}}{T-l}: \chi_{m-p-q}^{2}
\end{aligned}
$$

Note: the number of degrees of freedom is $m-p-q$

- Null hypothesis is rejected at the 5% significance level if $Q(m)$ is greater than the appropriate 5% critical value of chi-squared distribution with $m-p-q$ degrees of freedom.

3. Model checking:
 methodological framework (II)

3.2. Residual diagnostics for normality

- Are residuals normally distributed?

1. Histogram (graph of distribution of frequencies within certain intervals)
2. Jarque-Bera (JB) normality test (based on the coefficient of skewness and kurtosis)
3. Skewness measures the extent to which distribution is not symmetric about its mean value.
4. Kurtosis measures how fat tails of the distribution are (extreme events - outliers - fat tails - high kurtosis).

Coefficient of skewness	Coefficient of kurtosis
$\alpha_{3}=0$ for N distribution	$\alpha_{4}=3$ for N distribution
$\hat{\alpha}_{3}=\frac{\frac{\sum \hat{a}_{t}^{3}}{\mathrm{~T}}}{\hat{\sigma}_{\mathrm{a}}^{3}}$	$\hat{\alpha}_{4}=\frac{\frac{\sum \hat{\mathrm{a}}_{\mathrm{t}}^{4}}{\mathrm{~T}}}{\hat{\sigma}_{\mathrm{a}}{ }^{4}}$
Under the null hypothesis $\hat{\alpha}_{3}: \mathrm{N}\left(0, \frac{6}{\mathrm{~T}}\right)$	Under the null hypothesis $\hat{\alpha}_{4}: \mathrm{N}\left(3, \frac{24}{\mathrm{~T}}\right)$
$\sqrt{\frac{\mathrm{T}}{6}} \hat{\alpha}_{3}: \mathrm{N}(0,1)$	$\sqrt{\frac{T}{24}}\left(\hat{\alpha}_{4}-3\right): N(0,1)$
$\mathrm{JB}=\frac{\mathrm{T}}{6}\left[\hat{\alpha}_{3}{ }^{2}+\frac{\left(\hat{\alpha}_{4}-3\right)^{2}}{4}\right]: \chi_{2}^{2}$	

13

Note to previous table:

$$
\begin{aligned}
\hat{a}_{t} & - \text { Residuals } \\
\hat{\sigma}_{a}^{2} & =\frac{1}{T} \sum_{t=1}^{T} \hat{a}_{t}^{2}-\text { Variance estimator }
\end{aligned}
$$

3. Model checking: methodological framework (III)

3.3. Is the choice of p and q optimal? Information criteria embody two factors

1. A term which is a function of residual variability
2. A term which is a penalty for the loss of degrees of freedom from adding extra parameters

$$
\operatorname{IC}(p, q)=\ln \hat{\sigma}_{a}{ }^{2}+g \frac{p+q}{T}
$$

where \boldsymbol{g} is non-negative penalty function.

Information criteria

- Adding a new variable or an additional lag to a model will have two competing effects on the $I C$:
- variance of the residuals will fall
- the value of the penalty term will increase.
- The objective is to choose the number of parameters that minimizes $I C$

$$
I C(p, q)=\ln \hat{\sigma}_{a}^{2}+g \frac{p+q}{T}
$$

Information criteria (II)

Function g	Penalty term	Name of information criterion	Notation
2	$2(\mathrm{p}+\mathrm{q}) / \mathrm{T}$	Akaike	AIC
$\ln \mathrm{T}$	$(\ln \mathrm{T})(\mathrm{p}+\mathrm{q}) / \mathrm{T}$	Schwarz	SC or SIC
$2 \ln \ln \mathrm{~T}$	$2(\ln \ln \mathrm{~T})(\mathrm{p}+\mathrm{q}) / \mathrm{T}$	Hannan-Quinn	HQC or HQIC

17

How different information

 criterion are related?$$
\begin{aligned}
& T \geq 8, \ln T>2 \Rightarrow S C>A I C \\
& T \geq 16,2 \ln \ln T>2 \Rightarrow H Q>A I C \\
& T \geq 16, S C>H Q>A I C \\
& \text { Note } \\
& \ln 8=2.08 \\
& \ln 16=2.77 \\
& 2 \ln \ln 16=2.04
\end{aligned}
$$

Model checking: note

- Additional testing procedures may be used, especially those that assess performances in forecasting

Example: Fitting ARMA model to annual GDP growth in Serbia

Data set: gdp.wf1
Quarterly nominal GDP data for: 2005q1 - 2020q4 (www.nbs.rs)
Annual growth of GDP is considered for: 2006q1 - 2019q4 ($\mathrm{T}=56$).
It is computed as: $d 4 \lg d p=\lg d p-\lg d p(-4), \operatorname{lgdp}=\log (g d p)$.
SACF and SPACF for D4X is examined.
Two specifications are assumed at the beginning ARMA $(1,0)$ and ARMA $(0,3)$.
Additional modelling is performed by the inclusion of step dummy variable (D2006Q1=1 for 2006Q1-2008Q3 and 0 otherwise).

Data plot

D4LBDP

SACF and SPACF

Sample (adjusted): 2006Q1 2019Q4
Included observations: 56 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
		1	0.772	0.772	35.197	0.000		
,	\square	2	0.533	-0.155	52.307	0.000		
1	$1 \square$	3	0.301	-0.138	57.872	0.000		
\square	$1 \\|$	4	0.128	-0.026	58.902	0.000		
1	\square	5	0.068	0.125	59.197	0.000		
1 I	\square	6	-0.002	-0.133	59.197	0.000		
1 1	1 -	7	0.007	0.115	59.200	0.000		
11	1 \\| 1	8	0.017	-0.010	59.219	0.000		
11	1 \|		9	0.039	0.038	59.327	0.000	
]	\|			10	0.080	0.039	59.777	0.000
11	\square^{\square}	11	0.028	-0.161	59.831	0.000		
,	1 \\|	12	-0.000	0.036	59.831	0.000		

The 95% significance interval $(-0.26,+0.26)$

Model 1: ARMA(1,0)

Dependent Variable: D4LGDP
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2006Q2 2019Q4
Included observations: 55 after adjustments
Convergence achieved after 2 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.022186	0.011166	1.987023	0.0521
AR(1)	0.796926	0.080841	9.857953	0.0000
R-squared	0.647088	Mean dependent var	0.022852	
Adjusted R-squared	0.640430	S.D. dependent var	0.028031	
S.E. of regression	0.016808	Akaike info criterion	-5.298179	
Sum squared resid	0.014974	Schwarz criterion	-5.225185	
Log likelihood	147.6999	Hannan-Quinn criter.	-5.269951	
F-statistic	97.17924	Durbin-Watson stat	1.635409	
Prob(F-statistic)	0.000000			
Inverted AR Roots	.80			

23

Model 1: ARMA(1,0)
 SACF and SPACF of RESIDUALS: There is significant autocorrelation at lag four!

Sample (adjusted): 2006Q2 2019Q4
Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1 \square^{\prime}	1 $\square 1$	10.170	0.170	1.6770	
1 \square^{\prime}	\square	20.119	0.093	2.5112	0.113
1.	1 [$3-0.093$	-0.132	3.0347	0.219
\square		$4-0.385$	-0.381	12.124	0.007
1	1 \square^{\prime}	50.020	0.188	12.149	0.016
\square	$1 \square$	$6-0.206$	-0.177	14.868	0.011
111	1	7 -0.018	-0.066	14.890	0.021
1 [1	$1 \square$	$8-0.046$	-0.148	15.034	0.036
1 [1]	1 1	$9-0.062$	0.042	15.294	0.054
1 -	1 \square^{1}	100.237	0.149	19.214	0.023
1 1 1	,	110.046	-0.024	19.364	0.036
-	, 口1	120.245	0.131	23.754	0.014

Model 1: Reduced ARMA(1,4) Different notation may be used

Dependent Variable: D4LBDP
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2006Q2 2019Q4
Included observations: 55 after adjustments
Failure to improve likelihood (non-zero gradients) after 17 iterations Coefficient covariance computed using outer product of gradients MA Backcast: OFF

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.018729	0.007972	2.349235	0.0226
AR(1)	0.846054	0.065522	12.91244	0.0000
MA(4)	-0.446659	0.134827	-3.312829	0.0017
R-squared	0.713252	Mean dependent var	0.022852	
Adjusted R-squared	0.702224	S.D. dependent var	0.028031	
S.E. of regression	0.015296	Akaike info criterion	-5.469430	
Sum squared resid	0.012167	Schwarz criterion	-5.359939	
Log likelihood	153.4093	Hannan-Quinn criter.	-5.427089	
F-statistic	64.67206	Durbin-Watson stat	1.738574	
Prob(F-statistic)	0.000000			
Inverted AR Roots	.85			
Inverted MA Roots	.82	$.00-.82 i$	$.00+.82 i$	-.82

Model 1: Reduced ARMA(1,4) SACF and SPACF of residuals: There is no autocorrelation

Sample (adjusted): 2006Q2 2019Q4
Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
1 \square^{1}	$\square 1$	10.118	0.118	0.8085	
1 1	1]	20.081	0.068	1.2001	
$1 \square$	$1 \square$	$3-0.109$	-0.129	1.9197	0.166
1 [1	$4-0.059$	-0.039	2.1329	0.344
1 \|	1 D	50.032	0.065	2.1976	0.532
$1 \square$	$1 \square$	6 -0.121	-0.143	3.1343	0.536
1 [1	1 [1	$7-0.055$	-0.048	3.3328	0.649
1 \|	1 -	80.026	0.077	3.3781	0.760
1 [1	14	9-0.064	-0.101	3.6606	0.818
$1 \square 1$,	100.177	0.171	5.8512	0.664
1 \| 1	1	11 -0.010	-0.017	5.8584	0.754
$1 \square$	$\square 1$	120.246	0.210	10.262	0.418

Model 2: ARMA $(0,3)$

Dependent Variable: D4LBDP
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2006Q1 2019Q4
Included observations: 56 after adjustments
Failure to improve likelihood (non-zero gradients) after 11 iterations
Coefficient covariance computed using outer product of gradients
MA Backcast: OFF

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.032578	0.006962	4.679582	0.0000
MA(1)	0.945240	0.125437	7.535579	0.0000
MA(2)	0.782287	0.147865	5.290552	0.0000
MA(3)	0.452571	0.126311	3.583001	0.0007
R-squared	0.652501	Mean dependent var	0.023704	
Adjusted R-squared	0.632453	S.D. dependent var	0.028498	
S.E. of regression	0.017277	Akaike info criterion	-5.210118	
Sum squared resid	0.015522	Schwarz criterion	-5.065450	
Log likelihood	149.8833	Hannan-Quinn criter.	-5.154030	
F-statistic	32.54695	Durbin-Watson stat	1.811053	
Prob(F-statistic)	0.000000			
Inverted MA Roots	$-.11-.78 i$	$-.11+.78 i$	-.73	

27

Model 3: Reduced ARMA(1,4) with dummy

Dependent Variable: D4LBDP
Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps)

Sample (adjusted): 2006Q2 2019Q4
Included observations: 55 after adjustments
Failure to improve likelihood (non-zero gradients) after 19 iterations
Coefficient covariance computed using outer product of gradients
MA Backcast: OFF

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.016565	0.007396	2.239697	0.0295
D2006Q1	0.034611	0.013594	2.546102	0.0140
AR(1)	0.845194	0.088202	9.582471	0.0000
MA(4)	-0.461975	0.138514	-3.335230	0.0016
R-squared	0.746135	Mean dependent var	0.022852	
Adjusted R-squared	0.731202	S.D. dependent var	0.028031	
S.E. of regression	0.014533	Akaike info criterion	-5.554867	
Sum squared resid	0.010771	Schwarz criterion	-5.408879	
Log likelihood	156.7588	Hannan-Quinn criter.	-5.498412	
F-statistic	49.96479	Durbin-Watson stat	1.837305	
Prob(F-statistic)	0.000000			
Inverted AR Roots	.85			
Inverted MA Roots	.82	$.00-.82 i$	$.00+.82 i$	-.82

Model	Model comparison 1. Reduced ARMA(1,4)	2. ARMA(0,3)	3. Reduced ARMA(1,4) +dummy
SC	-5.3599	-5.0655	$-\mathbf{- 5 . 4 0 8 9}$
Regression standard error	0.015296	0.017277	$\mathbf{0 . 0 1 4 5 3}$
Q(4)	$2.13(0.34)$	$0.95(0.33)$	$0.72(0.70)$
Q(12)	$10.26(0.42)$	$6.29(0.71)$	$11.58(0.31)$
JB	$0.95(0.62)$	$4.64(0.10)$	$1.38(0.50)$

29

