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Structure

• Linear process

• Autoregressive models

oAR(1) model

• Moving average models

oMA(1) model

• Examples

• Practical aspects of modelling
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AR(1) models: data plots of four generated

time series of size 200 (within Oxmetrics)
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AR(1) models: ACF

ACF-AR(1) model with parameter 0.4 
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AR(1) models: PACF

PACF-AR(1) model with parameter 0.4 
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ACF for AR(1) model 

Model Stationarity

condition

Autocorrelation function

(ordinary)

AR(1), 0<ф1<1 rl=ф1
l, l=1,2,…

It decays exponentially

AR(1), -1<ф1<0 rl=ф1
l, l=1,2,…

It decays exponentially,

but reverses sign for each l
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PACF for AR(1) model

Model Additional

description

Partial

autocorrelation function

AR(1), 0<ф1<1 There is no 

additional 

contribution 

to rt over rt-1

11=r1=1,
ll=0, for l =2,3,…

AR(1), -1<ф1<0 11=r1=1,

ll=0, for l =2,3,…
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ACF and PACF of AR(p) model

Model Autocorrelation function Partial autocorrelation 

function 

AR(p) It tails off as 

exponential decay 

or as damping sine 

wave.

11≠0, 22≠0,...,

pp=p ≠0, ll=0 for l>p.

It cuts off at lag p.

7

8



Professor Zorica Mladenović

IMQF, 2023. 5

Example: ACF for AR(2) model

9

Roots of the 

characteristic 

equations

Real Complex

Path of the ACF 

decay

Exponential Damping sine 

wave

Exponential with 

changing sign 
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MA(1) models: data plots of two generated

time series of size 300 (within Oxmetrics)
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MA(1) model with positive parameter: ACF and PACF
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MA(1) model with negative parameter: ACF and PACF

ACF-MA(1) model sa parametrom -0.8 
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ACF for simple AR and MA models

Model Stationarity

condition

Autocorrelation function

(ordinary)

White noise, 

MA(0)

It is always

stationary
rl=0, l=1,2,…

AR(1), 0<ф1<1 rl=ф1
l, l=1,2,…

It decays exponentially

AR(1),-1<ф1<0 rl=ф1
l, l=1,2,…

It decays exponentially,

but reverses sign for each l

MA(1), 0<θ1<1 It is always

stationary
r1=- θ1/(1+ θ1

2) < 0,

rl=0, for l=2,3,…

r1=- θ1/(1+ θ1
2) > 0,

rl=0, for l=2,3,…
MA(1), -1<θ1<0

11 

13

14

PACF for simple AR and MA models

Model Additional

description

Partial

autocorrelation function

White noise, 

MA(0)

Uncorrelated

process
ll=0, l=1,2,…

AR(1), 0<ф1<1 There is no 

additional 

contribution 

to rt  over rt-1

11=r1=1,

ll=0, for l =2,3,…

AR(1),-1<ф1<0 11=r1=1,

ll=0, for l =2,3,…

MA(1), 0<θ1<1 It has AR 

representation 

of infinity order. 

Values are negative and

decay in absolute value.

MA(1), -1<θ1<0 Values are changing sign

each lag and decay in

absolute value. 14
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ACF and PACF of AR(p) and MA(q) models

Model Autocorrelation function Partial autocorrelation 

function 

AR(p) It tails off as 

exponential decay 

or as damping sine 

wave.

11≠0, 22≠0,...,

pp=p ≠0, ll=0 for l>p.

It cuts off at lag p.

MA(q) r1≠0, r2≠0,..., rq≠0,

rl=0 for l>q.

It cuts off at lag q.

It tails off as 

exponential decay or 

as damping sine 

wave.

16

The application of ACF and PACF in 

empirical work

Model Useful tool in 

specifying the order

AR(p) PACF function 

It cuts off at lag p.

MA(q) ACF function 

It cuts off at lag q.

15
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• For individual work:

oAR (2)

oMA (2)

oARMA(1,1)

• Exercise, Eviews

o ACF and PACF of generated data

oHow to generate data? Example for MA(1) 
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MA(1) model: Eviews

' ma(1) model on sample of size 600, undated

workfile ma u 1 601

series e = 0

series x=0

rndseed 5

'Gaussian white noise with 0 mean and 1 variance

series e = nrnd

smpl 2 601

x=e-0.8*e(-1)

19



LINEAR PROCESS (LINEAR TIME SERIES)

A fundamental theorem in the analysis of stationary time series:

Wold’ s decomposition theorem

(Wold - Scandinavian statistician, 1910 - 1992, result from 1938)

We start with:
rt = D + S

D - Deterministic component (µ).

S - Stochastic component.

This theorem deals with S.

Wold’ s decomposition theorem:

Stochastic component of every weakly stationary times series rt has the
following form:

S = rt − µ = at + ψ1at−1 + ψ2at−2 + . . . =

∞∑
j=0

ψjat−j , ψ0 = 1

which is defined as a linear process or a linear time series.

ψ1, ψ2, . . . are ψ - weights.

E(at) = 0 γl =

{
σ2
a, l = 0

0, l ̸= 0
ρl =

{
1, l = 0
0, l ̸= 0

1
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• White noise represents a random shock/unanticipated shock - impulse.

• Linear process is also impulse response function.

• Using L we get:

rt − µ = at + ψ1at−1 + ψ2at−2 + . . . =
(
1 + ψ1L+ ψ2L

2 + . . .
)︸ ︷︷ ︸

Ψ(L)

at = Ψ(L)at.

• Linear process is also linear filter representation.
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E(rt) = µ.

var(rt) = E(rt − µ)2 = E (at + ψ1at−1 + ψ2at−2 + . . .)
2

= E(a2t )︸ ︷︷ ︸
σ2
a

+ψ2
1 E(a2t−1)︸ ︷︷ ︸

σ2
a

+ψ2
2 E(a2t−2)︸ ︷︷ ︸

σ2
a

+ . . .

+ 2ψ1E(atat−1)︸ ︷︷ ︸
0

+2ψ2E(atat−2)︸ ︷︷ ︸
0

+ . . .

= σ2
a

(
1 + ψ2

1 + ψ2
2 + . . .

)
= σ2

a

∞∑
i=0

ψ2
i .

γl = E(rt − µ)(rt−l − µ)

= E (at + ψ1at−1 + ψ2at−2 + . . . )

· (at−l + ψ1at−l−1 + ψ2at−l−2 + . . . )

= E (at + ψ1at−1 + . . .+ ψlat−l + ψl+1at−l−1 + ψl+2at−l−2 + . . . )

· (at−l + ψ1at−l−1 + ψ2at−l−2 + . . . )

= σ2
a (ψl + ψ1ψl+1 + ψ2ψl+2 + . . .)

= σ2
a

∞∑
i=0

ψiψl+i.

ρl =
γl
γ0

=

∑∞
i=0 ψiψl+i∑∞
i=0 ψ

2
i

.
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Conclusions:

1. Variance of linear process depends on variance of white noise and on ψ -
weights. It is finite for:

∑∞
i=0 ψ

2
i <∞ (

∑∞
i=0 |ψi| <∞).

2. The lag-l autocovariance depends on variance of white noise and on ψ -
weights.

3. The lag-l autocorrelation depends on ψ - weights only.
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There are three classes of weakly stationary time series:

• Autoregressive models (AR)

• Moving average models (MA)

• Autoregressive moving average models (ARMA)
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AUTOREGRESSIVE MODELS

General remarks

Autoregressive model of order p, AR(p) model, is defined as follows:

rt = ϕ0 + ϕ1rt−1 + ϕ2rt−2 + . . .+ ϕprt−p + at

rt − ϕ1rt−1 − ϕ2rt−2 − . . .− ϕprt−p = ϕ0 + at

ϕ0, ϕ1, ϕ2, . . . , ϕp are parameters, and at is white noise.

This representation is a stochastic difference equation of order p.

There is characteristic polynomial equation of order p that can be assigned
to a stochastic difference equation of order p:

gp − ϕ1g
p−1 − ϕ2g

p−2 − . . .− ϕp = 0

where g1, g2, . . . , gp are solutions/roots of the charasteristic equation.

Stationarity of time series defined by AR(p) model is determined
by the solutions g1, g2, . . . , gp.

For example: AR(2)

rt = ϕ1rt−1 + ϕ2rt−2 + at

rt − ϕ1rt−1 − ϕ2rt−2 = at

g2 − ϕ1g − ϕ2 = 0.
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The following theorem holds:

1. If all roots g1, g2, . . . , gp are less than one in modulus, then time series
is stationary.

2. If there exists a root gi, i = 1, 2, . . . , p, that is equal to one in modu-
lus, whereas other roots are less than one in modulus, then time series is
nonstationary. This is unit root time series.

• Root equals to 1 represents ordinary unit root, or just unit root. This
type of nonstationarity is eliminated by the application of the first order
difference.

• The number of unit roots is equal to the number of differencing needed
to achieve stationarity.

• Root equals to −1 represents seasonal unit root. This type of nonsta-
tionarity is eliminated by the application of the seasonal difference.

3. If there exists a root gi, i = 1, 2, . . . , p, greater than one, whereas other
roots are less than one in modulus, then time series is explosive.

• This type of nonstationarity is not eliminated by differencing.
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EXAMPLE:

Show that time series given as AR(3) model: rt = rt−1 + crt−2 − crt−3 + at,
c = const, has at least one unit root.

rt = rt−1 + crt−2 − crt−3 + at

rt − rt−1 − crt−2 + crt−3 = at

g3 − g2 − cg + c = 0

g2(g − 1)− c(g − 1) = 0

(g2 − c)(g − 1) = 0 =⇒ g1 = 1, g2/3 = ±
√
c.
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If we divide characteristic polynomial equation through by gp, we get

gp − ϕ1g
p−1 − ϕ2g

p−2 − . . .− ϕp = 0/ : gp

1− ϕ1
1

g
− ϕ2

1

g2
− . . .− ϕp

1

gp
= 0

For x =
1

g
, the new equation is reached:

1− ϕ1x− ϕ2x
2 − . . .− ϕpx

p = 0

New roots are: x1, x2, . . . , xp.

Stationarity condition becomes:

|gi| < 1 =⇒ |xi| > 1, i = 1, 2 . . . , p.
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Autoregressive model of order one

Autoregressive model of order one, AR(1), is given as:

rt = ϕ0 + ϕ1rt−1 + at

and ϕ1 is autoregresive parameter.

Key topics:

• Alternative representation concerning the mean value

• Stationarity condition

• Special case of linear process

• Autocovariance function

• Autocorrelation function (ordinary)

• Partial autocorrelation function
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1. Alternative representation concerning the mean value

rt = ϕ0 + ϕ1rt−1 + at

E(rt)︸ ︷︷ ︸
µ

= ϕ0 + ϕ1E(rt−1︸ ︷︷ ︸
µ

) + E(at)︸ ︷︷ ︸
0

µ = ϕ0 + ϕ1µ =⇒ µ =
ϕ0

1− ϕ1
=⇒ ϕ0 = µ(1− ϕ1)

(rt − µ) = ϕ1(rt−1 − µ) + at
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2. Stationarity condition

rt − µ = ϕ1(rt−1 − µ) + at

rt − µ = ϕ1 [ϕ1(rt−2 − µ] + at−1) + at

= ϕ21(rt−2 − µ) + ϕ1at−1 + at

= ϕ21 [ϕ1(rt−3 − µ) + at−2] + at + ϕ1at−1

= . . .

= at + ϕ1at−1 + ϕ21at−2 + ϕ31at−3 + . . .

Note:

rt − µ = ϕ1(rt−1 − µ) + at

rt−1 − µ = ϕ1(rt−2 − µ) + at−1

rt−2 − µ = ϕ1(rt−3 − µ) + at−2, etc.
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var(rt) = E (rt − µ)
2

var(rt) = E(at + ϕ1at−1 + ϕ21at−2 + ϕ31at−3 + . . .)2

= σ2
a(1 + ϕ21 + ϕ41 + ϕ61 + . . .)

σ2
a = var(at) = E(a2t ).

Variance is finite only if |ϕ1| < 1. Under this condition:

var(rt) = σ2
a(1 + ϕ21 + ϕ41 + ϕ61 + . . .) =

σ2
a

1− ϕ21
.
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2a. Stationarity condition - given the general condition

rt = ϕ1rt−1 + at

rt − ϕ1rt−1 = at

g − ϕ1 = 0 =⇒ g = ϕ1

|g| < 1 =⇒ |ϕ1| < 1
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3. AR(1) model is a linear process

We have just shown that AR(1) model can be written as:

rt − µ = at + ϕ1at−1 + ϕ21at−2 + ϕ31at−3 + . . .

rt − µ = at + ϕ1︸︷︷︸
ψ1

at−1 + ϕ21︸︷︷︸
ψ2

at−2 + ϕ31︸︷︷︸
ψ3

at−3 + . . .

This is a linear model representation.

Conclusion:

AR(1) model is a special case of a linear process for |ϕ1| < 1:

ψj = ϕj1, j = 1, 2, etc.
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4. Autocovariance

The lag-l autocovariance is:

γl = E(rt − µ)(rt−l − µ), l = 1, 2, . . .

Model:
rt − µ = ϕ1(rt−1 − µ) + at

We multiply by (rt−l − µ)

(rt − µ)(rt−l − µ) = ϕ1(rt−1 − µ)(rt−l − µ) + at(rt−l − µ)

and take expectations:

E(rt − µ)(rt−l − µ) = ϕ1E(rt−1 − µ)(rt−l − µ) + E(at(rt−l − µ))

E(rt − µ)(rt−l − µ)︸ ︷︷ ︸
γl

= ϕ1E(rt−1 − µ)(rt−l − µ)︸ ︷︷ ︸
γl−1

+E(at(rt−l − µ))

γl = ϕ1γl−1 + E(at(rt−l − µ)).
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γl = ϕ1γl−1 + E(at(rt−l − µ)).

There is a term E(at(rt−l − µ)):

E(at(rt−l − µ)) =

{
σ2
a, l = 0

0, l ̸= 0

l = 0, E(at(rt−l − µ)) = E(at(rt − µ)) = E(at(at + ϕ1at−1 + ϕ21at−2 + . . .)) = σ2
a

l = 1, E(at(rt−l − µ)) = E(at(rt−1 − µ)) = E(at(at−1 + ϕ1at−2 + ϕ21at−3 + . . .)) = 0

l = 2, 3, ..., E(at(rt−l − µ)) = 0
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Finally:

γl =

{
ϕ1γl−1 + σ2

a, l = 0
ϕ1γl−1, l ̸= 0

The following holds:

l = 0, γ0 = ϕ1γ1 + σ2
a

l = 1, γ1 = ϕ1γ0

so that variance is again: γ0 =
σ2
a

1− ϕ21
.

For l > 0, autocovariance is:

γl = ϕ1γl−1

and

γl = ϕ1 γl−1︸︷︷︸
ϕ1γl−2

= ϕ21 γl−2︸︷︷︸
ϕ1γl−3

= . . . = ϕl1γ0 =
ϕl1σ

2
a

1− ϕ21
.
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5. Autocorrelation function (ordinary)

The lag-l autocorrelation coefficient, ρl, is

ρl =
γl
γ0

Previously we derive:

♢ var(rt) = γ0 =
σ2
a

1− ϕ21
.

♢ γl =
ϕl1σ

2
a

1− ϕ21
.

Therefore:

ρl =
γl
γ0

=

σ2
aϕ

l
1

1− ϕ21
σ2
a

1− ϕ21

= ϕl1.

Autocorrelation function (ordinary) is:

ρl = ϕl1, l = 1, 2, . . .
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ρ1 = ϕ1, ρ2 = ϕ21, ρ3 = ϕ31, . . .

• If autocorrelation is positive (0 < ϕ1 < 1), then ACF decays
exponentially (+, +, +, . . .).

• If autocorrelation is negative (−1 < ϕ1 < 0), then ACF decays
exponentially and it oscillates in sign for each lag (−, +, −, . . .).
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6. Partial autocorrelation function

The lag-l autocorrelation coefficient:

It measures correlation between rt−l and rt

ρl =
cov (rt, rt−l)√
var(rt)var(rt−l)

=
cov (rt, rt−l)

var(rt)
.

However, this measure of correlation between rt−l and rt , can be influenced
by intermediate variables between t and t− l, (rt−1, rt−2, . . . , rt−l+1).

� Adjusting for the effects of rt−1, rt−2, . . . , rt−l+1 makes new correlation
coefficient between rt and rt−l.

� This is a lag-l partial autocorrelation coefficient.

� It is denoted as ϕll or ϕl,l.

� Sequence ϕ11, ϕ22, ... is partial autocorrelation function,

� Partial correlogram is graphical representation.

� Notation: PACF.

� There are two approaches in defining PACF.
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1. Regression analysis approach

We need to eliminate the impact of rt−1, rt−2, . . . , rt−l+1 from rt and rt−l.
The following two regressions are estimated by the OLS:

1. Regression of rt on rt−1, rt−2, . . . , rt−l+1 gives estimated value r̂t, and
residual series, (rt − r̂t)

• This is rt corrected for the influence of rt−1, rt−2, . . . , rt−l+1.

2. Regression of rt−l on rt−1, rt−2, . . . , rt−l+1 gives estimated value r̂t−l,
and residual series, (rt−l − r̂t−l).

• This is rt−l corrected for the influence of rt−1, rt−2, . . . , rt−l+1.

The lag-l partial autocorrelation coefficient, ϕll, is definined as lag-l ordinary
autocorrelation coefficient between (rt − r̂t) i (rt−l − r̂t−l):

ϕll =
cov ((rt − r̂t), (rt−l − r̂t−l))√
var(rt − r̂t)var(rt−l − r̂t−l)

, l = 2, 3 . . . .
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2. Time series approach

We consider the following AR models in consecutive order:

rt = ϕ01 + ϕ11rt−1 + a1t

rt = ϕ02 + ϕ11rt−1 + ϕ22rt−2 + a2t

rt = ϕ03 + ϕ11rt−1 + ϕ22rt−2 + ϕ33rt−3 + a3t

...

rt = ϕ0l + ϕ11rt−1 + ϕ22rt−2 + ϕ33rt−3 + . . .+ ϕllrt−l + alt

� ”The true” correlation between rt and rt−1: ϕ11 in the first model.

� ”The true” correlation between rt and rt−2 upon corrected for the
effect of rt−1: ϕ22 in the second model.

� ”The true” correlation between rt and rt−3 upon corrected for the
effects of rt−1 and rt−2: ϕ33 in the third model.

�

...

� The lag-l partial autocorrelation coefficient (ϕll) is the last autoregres-
sive parameter in AR(l) model.

Why? Multiple regression model contains partial slope coefficients. They
measure influence of a given explanatory variable on dependent variable upon
controlling for the effect of the rest of the explanatory variables.
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PACF based on ACF

Partial autocorrelation coefficient at a given lag can always be
defined as a function of ordinary autocorrelation coefficients.

The lag-1 partial autocorrelation coefficient:

ϕ11 = ρ1.

The lag-2 partial autocorrelation coefficient:

ϕ22 =
cov [(rt − r̂t), (rt−2 − r̂t−2)]√
var(rt − r̂t)var(rt−2 − r̂t−2)

• Estimate r̂t that accounts for rt−1: r̂t = ρ1rt−1.

• Estimate r̂t−2 that accounts for rt−1: r̂t−2 = ρ1rt−1.

ϕ22 =
cov [(rt − ρ1rt−1), (rt−2 − ρ1rt−1)]√
var(rt − ρ1rt−1)var(rt−2 − ρ1rt−1)

ϕ22 =
γ2 − ρ1γ1 − ρ1γ1 + ρ21γ0√

(γ0 − 2ρ1γ1 + ρ21γ0)
2

ρ1 =
γ1
γ0
, ρ2 =

γ2
γ0

ϕ22 =
γ0(ρ2 − 2ρ21 + ρ21)

γ0(1− 2ρ21 + ρ21)

ϕ22 =
ρ2 − ρ21
1− ρ21
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PACF in AR(1) model
(
ρl = ϕl1, l = 1, 2, . . .

)
ϕ11 = ρ1 = ϕ1

ϕ22 =
ρ2 − ρ21
1− ρ21

=
ϕ21 − ϕ21
1− ϕ21

= 0

ϕ33 = ϕ44 = . . . = 0

For all lags > 1:

ϕll = 0, l > 1.
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Sample estimate of PACF

� It is based on the estimate of ordinary ACF.

� The sequence ϕ̂11, ϕ̂22, ... represents sample partial autocorrela-
tion function, with sample partial correlogram being graphical rep-
resentation.

� Notation: SPACF.

� Estimate ϕ̂ll is consistent under general conditions.

� If time series is stationary iid sequence of random variables, then

ϕ̂ll : AN

(
0,

1

T

)
.

� The same statistical procedure as with ordinary ACF is followed to
test for the partial autocorrelation at the given lag.

H0 : ϕll = 0, H1 : ϕll ̸= 0,

(
±1.96

1√
T

)
, l = 1, 2, . . .
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MOVING AVERAGE MODELS

Moving average model of order q, MA(q), is of the following form:

rt = c0 + at − θ1at−1 − θ2at−2 − . . .− θqat−q

Model parameters are: c0, θ1, θ2, . . . , θq.

Time series given by MA model is always weakly stationary

var(rt) = E (rt − c0)
2

= E (at − θ1at−1 − θ2at−2 − . . .− θqat−q)
2

= σ2
a

(
1 + θ21 + θ22 + . . .+ θ2q

)
<∞

Linear process:
rt − µ = at + ψ1at−1 + ψ2at−2 + . . .

Under the following conditions:

ψ1 = −θ1, ψ2 = −θ2, . . . , ψq = −θq, ψj = 0, j > q,

MA(q) model is linear process.

Linear process in general is also denoted as MA(∞).
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Moving average model of order one

This model, MA(1) model, is:

rt = c0 + at − θ1at−1

E(rt) = c0.

Key topics:

• Autocovariance function

• Autocorrelation function (ordinary)

• Invertibility condition

• Partial autocorrelation function



IMQF23 - Linear Time Series Models 29

1. Autocovariance function

γl = E(rt − c0)(rt−l − c0) = E(at − θ1at−1)(at−l − θ1at−l−1)

γl =


(1 + θ21)σ

2
a, l = 0

−θ1σ2
a, l = 1

0, l > 1

2. Ordinary autocorrelation function

ρl =
γl
γ0

=



1, l = 0

− θ1
1 + θ21

, l = 1

0, l > 1

• ACF cuts off at lag 1. Only non-zero value is for l = 1.

• Values of ACF are zero for lags greater than order q = 1.
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Two relevant properties of ACF (for exercise):

1. There are two different MA(1) models with the same ACF.

2. ρ1 ∈ (±0.5).
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3. Invertibility condition

From MA(1) model, at is:

rt = at − θ1at−1 =⇒ at = rt + θ1at−1

Also:

at−1 = rt−1 + θ1at−2

at−2 = rt−2 + θ1at−3

etc.

rt =at − θ1at−1

=at − θ1 (rt−1 + θ1at−2)

=− θ1rt−1 − θ21 (rt−2 + θ1at−3) + at

= . . .

=− θ1rt−1 − θ21rt−2 − θ31rt−3 − . . .+ at.

For: πj = −θj1, j = 1, 2, . . . we get AR(∞) representation:

rt = π1rt−1 + π2rt−2 + π3rt−3 − . . .+ at

� What is condition for stationarity of AR(∞) representation?

� Answer: Given how π-weights are introduced, we conclude: |θ1| < 1.

� This is an invertibility condition that associates MA and AR
models.
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3. Invertibility condition - additionally

rt = at − θ1at−1 =⇒ rt = (1− θ1L) at =⇒
1

(1− θ1L)
rt = at

Invertibility condition, |θ1| < 1, enables following form of
1

(1− θ1L)
:

1

(1− θ1L)
=

(
1 + θ1L+ θ21L

2 + θ31L
3 + . . .

)

AR(∞) model is reached:

1

(1− θ1L)
rt = at =⇒

(
1 + θ1L+ θ21L

2 + θ31L
3 + . . .

)
rt = at

rt = −θ1rt−1 − θ21rt−2 − θ31rt−3 − . . .+ at.
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4. Partial autocorrelation function

� PACF of MA(1) tails off for many lags (proof is skipped).

� This is due to:

• MA(1) =⇒ AR(∞)

• Basic idea of PACF is derived from AR model:

ϕll is the last autoregressive parameter in AR(l) model.

� If θ1 > 0 (negative autocorrelation), PACF has all negative
values, and it decays exponentially (in absolute value).

� If θ1 < 0 (positive autocorrelation), PACF alternates sign for
each lag starting with positive value and it decays exponen-
tially (in absolute value).

� Factor that controls the decay of ϕll is −θl1.
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Practical aspects 

of ARMA modelling 

Zorica Mladenović 

2

Building ARMA models

The Box - Jenkins modelling approach
Box and Jenkins (1976) 

• British statisticians

o G.E.P. Box (1919-2013) and G.M. Jenkins (1933-1982)

• The purpose of the procedure is to find out the model that 
describes time series satisfactory well.

• Modeling framework: ARMA(p,q) models:

rt=f1rt-1+f2rt-2+…+fprt-p+at-q1at-1-q2at-2-…-qqat-q

• Box: “All models are wrong, but some of them are useful”. 

1

2
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3

Building ARMA models

The Box - Jenkins modelling approach

• It is an iterative procedure that is consisted of 
the following steps: 

o Identification of the model  

o Estimation of the model

oModel (diagnostic) checking 

4

Three steps of the Box – Jenkins approach
From Box, Jenkins, Reinsel and Ljung (2015):

1. Identification of the model

We use the data to suggest a subclass of parsimonious 
models worthy to be entertained. 

2. Estimation of the model

We use the data to make inferences about the 
parameters

3. Model checking 

We check the fitted model in its relation to the data with 
intent to reveal model inadequacies and to achieve model 
improvement. 

3

4
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1. Identification of the model

• Main goal: The values p and q should be 

determined

• Main principle: parsimony (keep it simple)

• Main methodological framework: 

o Plot data over time

oCompute and examine SACF and SPACF 

6

Model ACF PACF

AR(p) It tails off as 

exponential decay or as 

damping sine wave.

f11≠0, f22≠0,..., fpp=fp,

fll=0 for l>p.

It cuts off at lag p.

MA(q) r1≠0, r2≠0,..., rq≠0,

rl=0 for l>q.

It cuts off at lag q.

It tails off as 

exponential decay or 

as damping sine 

wave.

ARMA

(p,q)
It tails off. The first q

values are determined

by AR and MA

parameters.

For lags greater than q

coefficients behave as

in AR model.

It tails off. The first p

values are determined

by AR and MA

parameters.

For lags greater than

p coefficients behave

as in MA model.

5

6



Professor Zorica Mladenović

IMQF, 2023. 4

7

2. Estimation of the parameters

• Can we use the ordinary least squares method (OLS)? 

Yes, but only in AR models. 

• Parameters of MA and ARMA models cannot be 

estimated by OLS. Why? 

• MA(1) is equivalent to AR(∞):

rt=at-θ1at-1, at=rt+θ1at-1, at-1=rt-1+θ1at-2

rt=at-θ1at-1=at-θ1(rt-1+θ1at-2)

=-θ1rt-1-θ1
2 at-2+at =…= -θ1rt-1-θ1

2 rt-2-θ1
3 rt-3 -…+ at.

Parameter enters the model non-linearly.

• The method of non-linear least squares is followed

and it based on the application of optimization 

procedures.

8

3. Model checking

• Main question: Can we assume that what has 

not been explained by the model is random 

component?

• Main question asked differently: 

o Are the residuals (part of the variable that is 

left unexplained by the model) 

• noncorrelated?

• normally distributed?

o Is the choice of p and q optimal? 

7

8
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3. Model checking: 

methodological framework (I)

3.1. Residual diagnostics for autocorrelation

o Is there autocorrelation at certain lag l?

(H0: rl=0)

o Is there autocorrelation up to order m? 

(H0: r1= r2 =...= rm =0). 

10

Is there autocorrelation at certain lag l?

(H0: rl=0)

• Validity of the hypothesis H0: rl=0 is tested against the 

alternative H1: rl≠0 by checking whether estimator of the 

lag-l autocorrelation coefficient is an element of the 

interval [-1.96/√T, 1.96/√T]. 

• Null hypothesis cannot be rejected if: 

• Null hypothesis is rejected at the 5% significance level if

 T1.96/ ,T1.96/-ˆ
l r

 T1.96/ ,T1.96/-ˆ
l r

9

10
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Is there autocorrelation up to order m? 

(H0: r1= r2 =...= rm =0)

• Box-Pierce and Box-Ljung test statistics are applied on the 
residuals:

• Null hypothesis is rejected at the 5% significance level if 
Q(m) is greater than the appropriate 5% critical value of 
chi-squared distribution with m-p-q degrees of freedom.

𝑄
∗
(𝑚) = 𝐵𝑃(𝑚) = 𝑇

𝑙=1

𝑚

ො𝜌𝑙
2: 𝜒𝑚−𝑝−𝑞

2

𝑄(𝑚) = 𝐵𝐿𝑗(𝑚)

= 𝑇(𝑇 + 2)

𝑙=1

𝑚
ො𝜌𝑙
2

𝑇 − 𝑙
: 𝜒𝑚−𝑝−𝑞

2

𝑁𝑜𝑡𝑒: the number of degrees of freedom
is 𝑚 − 𝑝 − 𝑞

12

3. Model checking: 

methodological framework (II)

3.2. Residual diagnostics for normality

o Are residuals normally distributed?

1. Histogram (graph of distribution of  

frequencies within certain intervals)

2. Jarque-Bera (JB) normality test (based on 

the coefficient of skewness and kurtosis)
1. Skewness measures the extent to which distribution is 

not symmetric about its mean value.

2. Kurtosis measures how fat tails of the distribution are 

(extreme events – outliers – fat tails – high kurtosis).

11

12
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Coefficient of skewness Coefficient of kurtosis

ondistributi Nfor  03 = ondistributi Nfor  34 =

3
a

3
t

3
ˆ

T

â

ˆ


=



4
a

4
t

4
ˆ

T

â

ˆ


=













T

6
,0N:3ˆ      

 hypothesis null  theUnder

( )1,0N:)3ˆ(
24

T
4 −











T

24
,3N:4ˆ      

 hypothesis null  theUnder

( )1,0N:ˆ
6

T
3

2
24

2)34ˆ(2
3 :ˆ

6

T
JB 







+=

−

14

Note to previous table:

ො𝑎𝑡 − Residuals

ො𝜎𝑎
2 =

1

𝑇


𝑡=1

𝑇

ො𝑎𝑡
2 − Variance estimator

13

14
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3. Model checking: 

methodological framework (III)

3.3. Is the choice of p and q optimal?

Information criteria embody two factors

1. A term which is a function of residual 

variability

2. A term which is a penalty for the loss of 

degrees of freedom from adding extra 

parameters

where g is non-negative penalty function.  

T

qp
gˆln)q,p(IC

2

a

+
+= 

16

Information criteria

• Adding a new variable or an additional lag 

to a model will have two competing effects 

on the IC:

• variance of the residuals will fall  

• the value of the penalty term will increase. 

• The objective is to choose the number of 

parameters that minimizes IC

T

qp
gˆln)q,p(IC

2

a

+
+= 

15

16
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Information criteria (II)

Function g Penalty term Name of 

information 

criterion 

Notation

2 2(p+q)/T Akaike AIC

lnT (lnT)(p+q)/T Schwarz SC or SIC

2lnlnT 2(lnlnT)(p+q)/T Hannan-Quinn HQC or HQIC 

18

How different information

criterion are related?

𝑇 ≥ 8, ln 𝑇 > 2 ⇒ 𝑆𝐶 > 𝐴𝐼𝐶

𝑇 ≥ 16, 2 lnln 𝑇 > 2 ⇒ 𝐻𝑄 > 𝐴𝐼𝐶

𝑇 ≥ 16, 𝑆𝐶 > 𝐻𝑄 > 𝐴𝐼𝐶

𝑁𝑜𝑡𝑒
ln 8 = 2.08
ln 1 6 = 2.77
2 lnln 1 6 = 2.04

17

18



Professor Zorica Mladenović

IMQF, 2023. 10

19

Model checking: note

• Additional testing procedures may be 

used, especially those that assess

performances in forecasting

Example: Fitting ARMA model to 

annual GDP growth in Serbia

Data set: gdp.wf1

Quarterly nominal GDP data for: 2005q1 – 2020q4 (www.nbs.rs)

Annual growth of GDP is considered for: 2006q1 – 2019q4 
(T=56). 

It is computed as: d4lgdp=lgdp-lgdp(-4), lgdp=log(gdp).  

SACF and SPACF for D4X is examined.

Two specifications are assumed at the beginning

ARMA(1,0) and ARMA(0,3). 

Additional modelling is performed by the inclusion of step
dummy variable (D2006Q1=1 for 2006Q1-2008Q3 and 0 
otherwise).

19

20
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Data plot
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D4LBDP

SACF and SPACF 

Sample (adjusted): 2006Q1 2019Q4

Included observations: 56 after adjustments

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.772 0.772 35.197 0.000

2 0.533 -0.155 52.307 0.000

3 0.301 -0.138 57.872 0.000

4 0.128 -0.026 58.902 0.000

5 0.068 0.125 59.197 0.000

6 -0.002 -0.133 59.197 0.000

7 0.007 0.115 59.200 0.000

8 0.017 -0.010 59.219 0.000

9 0.039 0.038 59.327 0.000

10 0.080 0.039 59.777 0.000

11 0.028 -0.161 59.831 0.000

12 -0.000 0.036 59.831 0.000

The 95% significance interval (-0.26,+0.26)

21
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Model 1: ARMA(1,0)

Dependent Variable: D4LGDP

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

        steps)

Sample (adjusted): 2006Q2 2019Q4

Included observations: 55 after adjustments

Convergence achieved after 2 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.022186 0.011166 1.987023 0.0521

AR(1) 0.796926 0.080841 9.857953 0.0000

R-squared 0.647088     Mean dependent var 0.022852

Adjusted R-squared 0.640430     S.D. dependent var 0.028031

S.E. of regression 0.016808     Akaike info criterion -5.298179

Sum squared resid 0.014974     Schwarz criterion -5.225185

Log likelihood 147.6999     Hannan-Quinn criter. -5.269951

F-statistic 97.17924     Durbin-Watson stat 1.635409

Prob(F-statistic) 0.000000

Inverted AR Roots       .80

Model 1: ARMA(1,0)

SACF and SPACF of RESIDUALS:

There is significant autocorrelation at lag four!

Sample (adjusted): 2006Q2 2019Q4

Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.170 0.170 1.6770

2 0.119 0.093 2.5112 0.113

3 -0.093 -0.132 3.0347 0.219

4 -0.385 -0.381 12.124 0.007

5 0.020 0.188 12.149 0.016

6 -0.206 -0.177 14.868 0.011

7 -0.018 -0.066 14.890 0.021

8 -0.046 -0.148 15.034 0.036

9 -0.062 0.042 15.294 0.054

10 0.237 0.149 19.214 0.023

11 0.046 -0.024 19.364 0.036

12 0.245 0.131 23.754 0.014

23
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Model 1: Reduced ARMA(1,4)

Different notation may be used
Dependent Variable: D4LBDP

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

        steps)

Sample (adjusted): 2006Q2 2019Q4

Included observations: 55 after adjustments

Failure to improve likelihood (non-zero gradients) after 17 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: OFF

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.018729 0.007972 2.349235 0.0226

AR(1) 0.846054 0.065522 12.91244 0.0000

MA(4) -0.446659 0.134827 -3.312829 0.0017

R-squared 0.713252    Mean dependent var 0.022852

Adjusted R-squared 0.702224    S.D. dependent var 0.028031

S.E. of regression 0.015296    Akaike info criterion -5.469430

Sum squared resid 0.012167    Schwarz criterion -5.359939

Log likelihood 153.4093    Hannan-Quinn criter. -5.427089

F-statistic 64.67206    Durbin-Watson stat 1.738574

Prob(F-statistic) 0.000000

Inverted AR Roots       .85

Inverted MA Roots       .82      .00-.82i    .00+.82i      -.82

Model 1: Reduced ARMA(1,4)

SACF and SPACF of residuals:

There is no autocorrelation

Sample (adjusted): 2006Q2 2019Q4

Q-statistic probabilities adjusted for 2 ARMA terms

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.118 0.118 0.8085

2 0.081 0.068 1.2001

3 -0.109 -0.129 1.9197 0.166

4 -0.059 -0.039 2.1329 0.344

5 0.032 0.065 2.1976 0.532

6 -0.121 -0.143 3.1343 0.536

7 -0.055 -0.048 3.3328 0.649

8 0.026 0.077 3.3781 0.760

9 -0.064 -0.101 3.6606 0.818

10 0.177 0.171 5.8512 0.664

11 -0.010 -0.017 5.8584 0.754

12 0.246 0.210 10.262 0.418

25
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Final model 2:
ARMA(0,3)  

Model 2: ARMA(0,3) 

Dependent Variable: D4LBDP

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

        steps)

Sample (adjusted): 2006Q1 2019Q4

Included observations: 56 after adjustments

Failure to improve likelihood (non-zero gradients) after 11 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: OFF

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.032578 0.006962 4.679582 0.0000

MA(1) 0.945240 0.125437 7.535579 0.0000

MA(2) 0.782287 0.147865 5.290552 0.0000

MA(3) 0.452571 0.126311 3.583001 0.0007

R-squared 0.652501    Mean dependent var 0.023704

Adjusted R-squared 0.632453    S.D. dependent var 0.028498

S.E. of regression 0.017277    Akaike info criterion -5.210118

Sum squared resid 0.015522    Schwarz criterion -5.065450

Log likelihood 149.8833    Hannan-Quinn criter. -5.154030

F-statistic 32.54695    Durbin-Watson stat 1.811053

Prob(F-statistic) 0.000000

Inverted MA Roots -.11-.78i     -.11+.78i        -.73

Model 3: Reduced ARMA(1,4) with dummy
Dependent Variable: D4LBDP

Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt

        steps)

Sample (adjusted): 2006Q2 2019Q4

Included observations: 55 after adjustments

Failure to improve likelihood (non-zero gradients) after 19 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: OFF

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.016565 0.007396 2.239697 0.0295

D2006Q1 0.034611 0.013594 2.546102 0.0140

AR(1) 0.845194 0.088202 9.582471 0.0000

MA(4) -0.461975 0.138514 -3.335230 0.0016

R-squared 0.746135    Mean dependent var 0.022852

Adjusted R-squared 0.731202    S.D. dependent var 0.028031

S.E. of regression 0.014533    Akaike info criterion -5.554867

Sum squared resid 0.010771    Schwarz criterion -5.408879

Log likelihood 156.7588    Hannan-Quinn criter. -5.498412

F-statistic 49.96479    Durbin-Watson stat 1.837305

Prob(F-statistic) 0.000000

Inverted AR Roots       .85

Inverted MA Roots       .82      .00-.82i    .00+.82i      -.82

27
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:

Model 1.
Reduced 

ARMA(1,4)

2.
ARMA(0,3)

3.
Reduced

ARMA(1,4)
+dummy

SC -5.3599 -5.0655 -5.4089

Regression
standard 
error

0.015296 0.017277 0.01453

Q(4) 2.13(0.34) 0.95(0.33) 0.72(0.70)

Q(12) 10.26(0.42) 6.29(0.71) 11.58(0.31)

JB 0.95(0.62) 4.64(0.10) 1.38(0.50)

Model comparison

29
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