

IMQF, 2023.

Model	Stationarity condition	Autocorrelation function (ordinary)
AR(1), 0<\$\phi_1<1\$		$\rho_l = \phi_1^{\ l}, \ l = 1, 2, \dots$ It decays exponentially
AR(1), -1<\$\phi_1<0\$	$ \varphi_I < I$	$\rho_l = \phi_1^{l}, l = 1, 2,$ It decays exponentially, but reverses sign for each <i>l</i>

Model	Additional description	Partial autocorrelation function
AR(1), 0<\$\phi_1<1\$	There is no additional	$\phi_{11} = \rho_1 = \phi_{1,}$ $\phi_{11} = 0, \text{ for } l = 2,3,$
AR(1), -1<\$	to r_t over r_{t-1}	$\phi_{ll} = \rho_l = \phi_l,$ $\phi_{ll} = 0, \text{ for } l = 2,3,$
		$\phi_{ll} = 0$, for $l = 2, 3,$

Model	Autocorrelation function	Partial autocorrelation function
AR(p)	It tails off as exponential decay or as damping sine wave.	$\phi_{ll} \neq 0, \ \phi_{22} \neq 0,,$ $\phi_{pp} = \phi_p \neq 0, \ \phi_{ll} = 0 \text{ for } l >$ It cuts off at lag p.
	wave.	

	5		
model Complex	Damping sine	wave	
ACF for AR(2) Real	Exponential	Exponential with changing sign	
Example: Roots of the characteristic	equations Path of the ACF	decay	

9

ACF for simple AR and MA models		
Model	Stationarity condition	Autocorrelation function (ordinary)
White noise, MA(0)	It is always stationary	$\rho_l = 0, l = 1, 2, \dots$
AR(1), 0<\$\phi_1<1\$		$ \rho_l = \phi_l^{\ l}, \ l=1,2,\dots $ It decays exponentially
AR(1),-1<\$\p\$_1<0	$ \varphi_I < I$	$\rho_l = \phi_l^{\ l}, \ l = 1, 2, \dots$ It decays exponentially, but reverses sign for each <i>l</i>
MA(1), 0<θ ₁ <1	It is always stationary	$\rho_1 = -\theta_1 / (1 + \theta_1^2) < 0,$ $\rho_l = 0, \text{ for } l = 2, 3, \dots$
MA(1), -1<θ ₁ <0	_	$\rho_1 = -\theta_1 / (1 + \theta_1^2) > 0,$ $\rho_l = 0, \text{ for } l = 2, 3, \dots$

Model	Additional description	Partial autocorrelation function
White noise, MA(0)	Uncorrelated process	$\phi_{ll} = 0, \ l = 1, 2, \dots$
AR(1), 0<∲ ₁ <1	There is no additional	$\phi_{ll} = \rho_l = \phi_l,$ $\phi_{ll} = 0, \text{ for } l = 2,3,$
AR(1),-1<\$\phi_1<0\$	to r_t over r_{t-1}	$ \begin{array}{c} \phi_{ll} = \rho_{l} = \phi_{l}, \\ \phi_{ll} = 0, \text{ for } l = 2, 3, \dots \end{array} $
MA(1), 0<θ ₁ <1	It has AR representation of infinity order.	Values are negative and decay in absolute value.
MA(1), -1<θ ₁ <0		Values are changing sign each lag and decay in absolute value.

Model	Autocorrelation function	Partial autocorrelation function
AR(p)	It tails off as exponential decay or as damping sine wave.	$\phi_{11} \neq 0, \phi_{22} \neq 0,,$ $\phi_{pp} = \phi_p \neq 0, \phi_{ll} = 0 \text{ for } l > p$ It cuts off at lag p.
MA(q)	$\begin{array}{l} \rho_1 \neq 0, \ \rho_2 \neq 0,, \ \rho_q \neq 0, \\ \rho_l = 0 \ \text{for } l > q. \\ \text{It cuts off at lag q.} \end{array}$	It tails off as exponential decay or as damping sine wave.

Model	Useful tool in	
	specifying the order	
AR(p)	PACF function It cuts off at lag p.	
MA(q)	ACF function It cuts off at lag q.	

MA(1) model: Eviews

```
' ma(1) model on sample of size 600, undated
workfile ma u 1 601
series e = 0
series x=0
rndseed 5
'Gaussian white noise with 0 mean and 1 variance
series e = nrnd
smpl 2 601
x=e-0.8*e(-1)
```

LINEAR PROCESS (LINEAR TIME SERIES)

A fundamental theorem in the analysis of stationary time series: Wold' s decomposition theorem

(Wold - Scandinavian statistician, 1910 - 1992, result from 1938)

We start with:

$$r_t = D + S$$

D - Deterministic component (μ) .

 ${\cal S}$ - Stochastic component.

This theorem deals with S.

Wold's decomposition theorem:

Stochastic component of every weakly stationary times series r_t has the following form:

$$S = r_t - \mu = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \ldots = \sum_{j=0}^{\infty} \psi_j a_{t-j}, \ \psi_0 = 1$$

which is defined as a linear process or a linear time series.

 ψ_1, ψ_2, \ldots are ψ - weights.

$$E(a_t) = 0 \quad \gamma_l = \begin{cases} \sigma_a^2, \ l = 0 \\ 0, \ l \neq 0 \end{cases} \qquad \rho_l = \begin{cases} 1, \ l = 0 \\ 0, \ l \neq 0 \end{cases}$$

- White noise represents a random shock/unanticipated shock **impulse**.
- Linear process is also **impulse response function**.
- Using L we get:

$$r_t - \mu = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \ldots = \underbrace{\left(1 + \psi_1 L + \psi_2 L^2 + \ldots\right)}_{\Psi(L)} a_t = \Psi(L) a_t.$$

• Linear process is also **linear filter representation**.

$$\begin{split} E(r_t) &= \mu. \\ \mathrm{var}(r_t) &= E(r_t - \mu)^2 = E\left(a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \ldots\right)^2 \\ &= \underbrace{E(a_t^2)}_{\sigma_a^2} + \psi_1^2 \underbrace{E(a_{t-1}^2)}_{\sigma_a^2} + \psi_2^2 \underbrace{E(a_{t-2}^2)}_{\sigma_a^2} + \ldots \\ &+ 2\psi_1 \underbrace{E(a_t a_{t-1})}_{0} + 2\psi_2 \underbrace{E(a_t a_{t-2})}_{0} + \ldots \\ &= \sigma_a^2 \left(1 + \psi_1^2 + \psi_2^2 + \ldots\right) \\ &= \sigma_a^2 \sum_{i=0}^\infty \psi_i^2. \end{split}$$

$$\gamma_l = E(r_t - \mu)(r_{t-l} - \mu)$$

$$= E (a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots) \cdot (a_{t-l} + \psi_1 a_{t-l-1} + \psi_2 a_{t-l-2} + \dots)$$

 $= E (a_t + \psi_1 a_{t-1} + \dots + \psi_l a_{t-l} + \psi_{l+1} a_{t-l-1} + \psi_{l+2} a_{t-l-2} + \dots)$ $\cdot (a_{t-l} + \psi_1 a_{t-l-1} + \psi_2 a_{t-l-2} + \dots)$

$$= \sigma_a^2 (\psi_l + \psi_1 \psi_{l+1} + \psi_2 \psi_{l+2} + \ldots)$$

$$= \sigma_a^2 \sum_{i=0}^{\infty} \psi_i \psi_{l+i}.$$

$$\rho_l = \frac{\gamma_l}{\gamma_0} = \frac{\sum_{i=0}^{\infty} \psi_i \psi_{l+i}}{\sum_{i=0}^{\infty} \psi_i^2}.$$

Conclusions:

1. Variance of linear process depends on variance of white noise and on ψ -weights. It is finite for: $\sum_{i=0}^{\infty} \psi_i^2 < \infty \ (\sum_{i=0}^{\infty} |\psi_i| < \infty).$

2. The lag-l autocovariance depends on variance of white noise and on ψ -weights.

3. The lag-l autocorrelation depends on ψ - weights only.

There are three classes of weakly stationary time series:

- Autoregressive models (AR)
- Moving average models (*MA*)
- Autoregressive moving average models (ARMA)

AUTOREGRESSIVE MODELS

General remarks

Autoregressive model of order p, AR(p) model, is defined as follows:

$$r_t = \phi_0 + \phi_1 r_{t-1} + \phi_2 r_{t-2} + \ldots + \phi_p r_{t-p} + a_t$$

 $r_t - \phi_1 r_{t-1} - \phi_2 r_{t-2} - \ldots - \phi_p r_{t-p} = \phi_0 + a_t$

 $\phi_0, \phi_1, \phi_2, \dots, \phi_p$ are parameters, and a_t is white noise.

This representation is a stochastic difference equation of order p.

There is characteristic polynomial equation of order p that can be assigned to a stochastic difference equation of order p:

$$g^{p} - \phi_{1}g^{p-1} - \phi_{2}g^{p-2} - \ldots - \phi_{p} = 0$$

where g_1, g_2, \ldots, g_p are solutions/roots of the characteristic equation.

Stationarity of time series defined by AR(p) model is determined by the solutions g_1, g_2, \ldots, g_p .

For example: AR(2)

$$r_{t} = \phi_{1}r_{t-1} + \phi_{2}r_{t-2} + a_{t}$$
$$r_{t} - \phi_{1}r_{t-1} - \phi_{2}r_{t-2} = a_{t}$$
$$g^{2} - \phi_{1}g - \phi_{2} = 0.$$

The following theorem holds:

1. If all roots g_1, g_2, \ldots, g_p are less than one in modulus, then **time series** is stationary.

2. If there exists a root g_i , i = 1, 2, ..., p, that is equal to one in modulus, whereas other roots are less than one in modulus, then time series is nonstationary. This is **unit root time series**.

• Root equals to 1 represents ordinary unit root, or just unit root. This type of nonstationarity is eliminated by the application of the first order difference.

• The number of unit roots is equal to the number of differencing needed to achieve stationarity.

• Root equals to -1 represents seasonal unit root. This type of nonstationarity is eliminated by the application of the seasonal difference.

3. If there exists a root g_i , i = 1, 2, ..., p, greater than one, whereas other roots are less than one in modulus, then **time series is explosive**.

• This type of nonstationarity is **not** eliminated by differencing.

EXAMPLE:

Show that time series given as AR(3) model: $r_t = r_{t-1} + cr_{t-2} - cr_{t-3} + a_t$, c = const, has at least one unit root.

$$r_{t} = r_{t-1} + cr_{t-2} - cr_{t-3} + a_{t}$$

$$r_{t} - r_{t-1} - cr_{t-2} + cr_{t-3} = a_{t}$$

$$g^{3} - g^{2} - cg + c = 0$$

$$g^{2}(g-1) - c(g-1) = 0$$

$$(g^{2} - c)(g-1) = 0 \Longrightarrow g_{1} = 1, g_{2/3} = \pm \sqrt{c}.$$

If we divide characteristic polynomial equation through by g^p , we get

$$g^{p} - \phi_{1}g^{p-1} - \phi_{2}g^{p-2} - \dots - \phi_{p} = 0/: g^{p}$$
$$1 - \phi_{1}\frac{1}{g} - \phi_{2}\frac{1}{g^{2}} - \dots - \phi_{p}\frac{1}{g^{p}} = 0$$

For $x = \frac{1}{g}$, the new equation is reached:

$$1 - \phi_1 x - \phi_2 x^2 - \ldots - \phi_p x^p = 0$$

New roots are: x_1, x_2, \ldots, x_p .

Stationarity condition becomes:

$$|g_i| < 1 \Longrightarrow |x_i| > 1, \quad i = 1, 2 \dots, p.$$

Autoregressive model of order one

Autoregressive model of order one, AR(1), is given as:

$$r_t = \phi_0 + \phi_1 r_{t-1} + a_t$$

and ϕ_1 is autoregresive parameter.

Key topics:

- Alternative representation concerning the mean value
- Stationarity condition
- Special case of linear process
- Autocovariance function
- Autocorrelation function (ordinary)
- Partial autocorrelation function

 $1. \ Alternative \ representation \ concerning \ the \ mean \ value$

$$r_t = \phi_0 + \phi_1 r_{t-1} + a_t$$

$$\underbrace{E(r_t)}_{\mu} = \phi_0 + \phi_1 \underbrace{E(r_{t-1})}_{\mu} + \underbrace{E(a_t)}_{0}$$

$$\mu = \phi_0 + \phi_1 \mu \Longrightarrow \mu = \frac{\phi_0}{1 - \phi_1} \Longrightarrow \phi_0 = \mu(1 - \phi_1)$$

$$(r_t - \mu) = \phi_1(r_{t-1} - \mu) + a_t$$

2. Stationarity condition

$$r_{t} - \mu = \phi_{1}(r_{t-1} - \mu) + a_{t}$$

$$r_{t} - \mu = \phi_{1} [\phi_{1}(r_{t-2} - \mu] + a_{t-1}) + a_{t}$$

$$= \phi_{1}^{2}(r_{t-2} - \mu) + \phi_{1}a_{t-1} + a_{t}$$

$$= \phi_{1}^{2} [\phi_{1}(r_{t-3} - \mu) + a_{t-2}] + a_{t} + \phi_{1}a_{t-1}$$

$$= \dots$$

$$= a_{t} + \phi_{1}a_{t-1} + \phi_{1}^{2}a_{t-2} + \phi_{1}^{3}a_{t-3} + \dots$$

Note:

$$r_t - \mu = \phi_1(r_{t-1} - \mu) + a_t$$

$$\begin{aligned} r_{t-1} - \mu &= \phi_1(r_{t-2} - \mu) + a_{t-1} \\ r_{t-2} - \mu &= \phi_1(r_{t-3} - \mu) + a_{t-2}, \quad \text{etc.} \end{aligned}$$

$$\operatorname{var}(r_t) = E (r_t - \mu)^2$$
$$\operatorname{var}(r_t) = E(a_t + \phi_1 a_{t-1} + \phi_1^2 a_{t-2} + \phi_1^3 a_{t-3} + \dots)^2$$
$$= \sigma_a^2 (1 + \phi_1^2 + \phi_1^4 + \phi_1^6 + \dots)$$

 $\sigma_a^2 = \operatorname{var}(a_t) = E(a_t^2).$

Variance is finite only if $|\phi_1| < 1$. Under this condition:

$$\operatorname{var}(r_t) = \sigma_a^2 (1 + \phi_1^2 + \phi_1^4 + \phi_1^6 + \ldots) = \frac{\sigma_a^2}{1 - \phi_1^2}.$$

2a. Stationarity condition - given the general condition

$$r_{t} = \phi_{1}r_{t-1} + a_{t}$$
$$r_{t} - \phi_{1}r_{t-1} = a_{t}$$
$$g - \phi_{1} = 0 \Longrightarrow g = \phi_{1}$$

$|g| < 1 \Longrightarrow |\phi_1| < 1$

3. AR(1) model is a linear process

We have just shown that AR(1) model can be written as:

$$r_t - \mu = a_t + \phi_1 a_{t-1} + \phi_1^2 a_{t-2} + \phi_1^3 a_{t-3} + \dots$$

$$r_t - \mu = a_t + \underbrace{\phi_1}_{\psi_1} a_{t-1} + \underbrace{\phi_1^2}_{\psi_2} a_{t-2} + \underbrace{\phi_1^3}_{\psi_3} a_{t-3} + \dots$$

This is a linear model representation.

Conclusion:

AR(1) model is a special case of a linear process for $|\phi_1|<1:$

$$\psi_j = \phi_1^j, \, j = 1, 2, \text{etc.}$$

4. Autocovariance

The lag-l autocovariance is:

$$\gamma_l = E(r_t - \mu)(r_{t-l} - \mu), \quad l = 1, 2, \dots$$

Model:

$$r_t - \mu = \phi_1(r_{t-1} - \mu) + a_t$$

We multiply by $(r_{t-l} - \mu)$

$$(r_t - \mu)(r_{t-l} - \mu) = \phi_1(r_{t-1} - \mu)(r_{t-l} - \mu) + a_t(r_{t-l} - \mu)$$

and take expectations:

$$E(r_t - \mu)(r_{t-l} - \mu) = \phi_1 E(r_{t-1} - \mu)(r_{t-l} - \mu) + E(a_t(r_{t-l} - \mu))$$

$$\underbrace{E(r_t - \mu)(r_{t-l} - \mu)}_{\gamma_l} = \phi_1 \underbrace{E(r_{t-1} - \mu)(r_{t-l} - \mu)}_{\gamma_{l-1}} + E(a_t(r_{t-l} - \mu))$$

$$\gamma_l = \phi_1 \gamma_{l-1} + E(a_t(r_{t-l} - \mu)).$$

$$\gamma_{l} = \phi_{1} \gamma_{l-1} + E(a_{t}(r_{t-l} - \mu)).$$

There is a term $E(a_t(r_{t-l} - \mu))$:

$$E(a_t(r_{t-l} - \mu)) = \begin{cases} \sigma_a^2, & l = 0\\ 0, & l \neq 0 \end{cases}$$

$$l = 0, E(a_t(r_{t-l} - \mu)) = E(a_t(r_t - \mu)) = E(a_t(a_t + \phi_1 a_{t-1} + \phi_1^2 a_{t-2} + \ldots)) = \sigma_a^2$$
$$l = 1, E(a_t(r_{t-l} - \mu)) = E(a_t(r_{t-1} - \mu)) = E(a_t(a_{t-1} + \phi_1 a_{t-2} + \phi_1^2 a_{t-3} + \ldots)) = 0$$

$$l = 2, 3, ..., \qquad E(a_t(r_{t-l} - \mu)) = 0$$

Finally:

$$\gamma_l = \begin{cases} \phi_1 \gamma_{l-1} + \sigma_a^2, & l = 0\\ \phi_1 \gamma_{l-1}, & l \neq 0 \end{cases}$$

The following holds:

$$l = 0, \gamma_0 = \phi_1 \gamma_1 + \sigma_a^2$$
$$l = 1, \gamma_1 = \phi_1 \gamma_0$$

so that variance is again: $\gamma_0 = \frac{\sigma_a^2}{1 - \phi_1^2}$.

For l > 0, autocovariance is:

$$\gamma_l = \phi_1 \gamma_{l-1}$$

and

$$\gamma_l = \phi_1 \underbrace{\gamma_{l-1}}_{\phi_1 \gamma_{l-2}} = \phi_1^2 \underbrace{\gamma_{l-2}}_{\phi_1 \gamma_{l-3}} = \dots = \phi_1^l \gamma_0 = \frac{\phi_1^l \sigma_a^2}{1 - \phi_1^2}.$$

5. Autocorrelation function (ordinary)

The lag-l autocorrelation coefficient, $\rho_l,$ is

$$\rho_l = \frac{\gamma_l}{\gamma_0}$$

Previously we derive:

$$\diamond \operatorname{var}(r_t) = \gamma_0 = \frac{\sigma_a^2}{1 - \phi_1^2}.$$
$$\diamond \gamma_l = \frac{\phi_l^l \sigma_a^2}{1 - \phi_1^2}.$$

Therefore:

$$\rho_l = \frac{\gamma_l}{\gamma_0} = \frac{\frac{\sigma_a^2 \phi_1^l}{1 - \phi_1^2}}{\frac{\sigma_a^2}{1 - \phi_1^2}} = \phi_1^l.$$

Autocorrelation function (ordinary) is:

$$\rho_l = \phi_1^l, \quad l = 1, 2, \dots$$

$$\rho_1 = \phi_1, \ \rho_2 = \phi_1^2, \ \rho_3 = \phi_1^3, \dots$$

• If autocorrelation is positive (0 < ϕ_1 < 1), then ACF decays exponentially (+, +, +, ...).

• If autocorrelation is negative $(-1 < \phi_1 < 0)$, then ACF decays exponentially and it oscillates in sign for each lag (-, +, -, ...).

6. Partial autocorrelation function

The lag-l autocorrelation coefficient:

It measures correlation between \boldsymbol{r}_{t-l} and \boldsymbol{r}_t

$$\rho_l = \frac{\operatorname{cov}\left(r_t, r_{t-l}\right)}{\sqrt{\operatorname{var}(r_t)\operatorname{var}(r_{t-l})}} = \frac{\operatorname{cov}\left(r_t, r_{t-l}\right)}{\operatorname{var}(r_t)}.$$

However, this measure of correlation between r_{t-l} and r_t , can be influenced by intermediate variables between t and t-l, $(r_{t-1}, r_{t-2}, \ldots, r_{t-l+1})$.

- Adjusting for the effects of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ makes new correlation coefficient between r_t and r_{t-l} .
- This is a lag-*l* partial autocorrelation coefficient.
- It is denoted as ϕ_{ll} or $\phi_{l,l}$.
- Sequence $\phi_{11}, \phi_{22}, \dots$ is partial autocorrelation function,
- Partial correlogram is graphical representation.
- Notation: PACF.
- There are two approaches in defining PACF.

1. Regression analysis approach

We need to eliminate the impact of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ from r_t and r_{t-l} . The following two regressions are estimated by the OLS:

- 1. Regression of r_t on $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ gives estimated value \hat{r}_t , and residual series, $(r_t \hat{r}_t)$
 - This is r_t corrected for the influence of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$.
- 2. Regression of r_{t-l} on $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$ gives estimated value \hat{r}_{t-l} , and residual series, $(r_{t-l} \hat{r}_{t-l})$.
 - This is r_{t-l} corrected for the influence of $r_{t-1}, r_{t-2}, \ldots, r_{t-l+1}$.

The lag-*l* partial autocorrelation coefficient, ϕ_{ll} , is definited as lag-*l* ordinary autocorrelation coefficient between $(r_t - \hat{r}_t)$ i $(r_{t-l} - \hat{r}_{t-l})$:

$$\phi_{ll} = \frac{\operatorname{cov}\left((r_t - \widehat{r}_t), (r_{t-l} - \widehat{r}_{t-l})\right)}{\sqrt{\operatorname{var}(r_t - \widehat{r}_t)\operatorname{var}(r_{t-l} - \widehat{r}_{t-l})}}, \ l = 2, 3 \dots$$

2. Time series approach

We consider the following AR models in consecutive order:

 $\begin{aligned} r_t &= \phi_{01} + \phi_{11} r_{t-1} + a_{1t} \\ r_t &= \phi_{02} + \phi_{11} r_{t-1} + \phi_{22} r_{t-2} + a_{2t} \\ r_t &= \phi_{03} + \phi_{11} r_{t-1} + \phi_{22} r_{t-2} + \phi_{33} r_{t-3} + a_{3t} \\ &\vdots \\ r_t &= \phi_{0l} + \phi_{11} r_{t-1} + \phi_{22} r_{t-2} + \phi_{33} r_{t-3} + \ldots + \phi_{ll} r_{t-l} + a_{lt} \end{aligned}$

- "The true" correlation between r_t and r_{t-1} : ϕ_{11} in the first model.
- "The true" correlation between r_t and r_{t-2} upon corrected for the effect of r_{t-1} : ϕ_{22} in the second model.
- "The true" correlation between r_t and r_{t-3} upon corrected for the effects of r_{t-1} and r_{t-2} : ϕ_{33} in the third model.
- :
- The lag-*l* partial autocorrelation coefficient (ϕ_{ll}) is the last autoregressive parameter in AR(l) model.

Why? Multiple regression model contains partial slope coefficients. They measure influence of a given explanatory variable on dependent variable upon controlling for the effect of the rest of the explanatory variables.

PACF based on ACF

Partial autocorrelation coefficient at a given lag can always be defined as a function of ordinary autocorrelation coefficients.

The lag-1 partial autocorrelation coefficient:

$$\phi_{11} = \rho_1$$

The lag-2 partial autocorrelation coefficient:

$$\phi_{22} = \frac{\cos\left[(r_t - \hat{r}_t), (r_{t-2} - \hat{r}_{t-2})\right]}{\sqrt{\operatorname{var}(r_t - \hat{r}_t)\operatorname{var}(r_{t-2} - \hat{r}_{t-2})}}$$

- Estimate \hat{r}_t that accounts for r_{t-1} : $\hat{r}_t = \rho_1 r_{t-1}$.
- Estimate \hat{r}_{t-2} that accounts for r_{t-1} : $\hat{r}_{t-2} = \rho_1 r_{t-1}$.

$$\phi_{22} = \frac{\operatorname{cov}\left[(r_t - \rho_1 r_{t-1}), (r_{t-2} - \rho_1 r_{t-1})\right]}{\sqrt{\operatorname{var}(r_t - \rho_1 r_{t-1})\operatorname{var}(r_{t-2} - \rho_1 r_{t-1})}}$$
$$\gamma_2 = \rho_1 \gamma_1 - \rho_1 \gamma_1 + \rho_1^2 \gamma_0$$

$$\phi_{22} = \frac{\gamma_2 - \rho_1 \gamma_1 - \rho_1 \gamma_1 + \rho_1^2 \gamma_0}{\sqrt{(\gamma_0 - 2\rho_1 \gamma_1 + \rho_1^2 \gamma_0)^2}}$$
$$\rho_1 = \frac{\gamma_1}{\gamma_0}, \quad \rho_2 = \frac{\gamma_2}{\gamma_0}$$
$$\phi_{22} = \frac{\gamma_0 (\rho_2 - 2\rho_1^2 + \rho_1^2)}{\gamma_0 (1 - 2\rho_1^2 + \rho_1^2)}$$
$$\phi_{22} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}$$

PACF in AR(1) model $(\rho_l = \phi_1^l, l = 1, 2, ...)$

$$\phi_{11} = \rho_1 = \phi_1$$

$$\phi_{22} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2} = \frac{\phi_1^2 - \phi_1^2}{1 - \phi_1^2} = 0$$

$$\phi_{33} = \phi_{44} = \dots = 0$$

For all lags > 1:

 $\phi_{ll}=0,\ l>1.$

Sample estimate of PACF

- It is based on the estimate of ordinary ACF.
- The sequence $\hat{\phi}_{11}$, $\hat{\phi}_{22}$, ... represents sample partial autocorrelation function, with sample partial correlogram being graphical representation.
- Notation: SPACF.
- Estimate $\widehat{\phi}_{ll}$ is consistent under general conditions.
- If time series is stationary iid sequence of random variables, then

$$\widehat{\phi}_{ll}$$
: $AN\left(0,\frac{1}{T}\right)$.

• The same statistical procedure as with ordinary ACF is followed to test for the partial autocorrelation at the given lag.

$$H_0: \phi_{ll} = 0, \quad H_1: \phi_{ll} \neq 0, \quad \left(\pm 1.96 \frac{1}{\sqrt{T}}\right), \ l = 1, 2, \dots$$

MOVING AVERAGE MODELS

Moving average model of order q, MA(q), is of the following form:

$$r_t = c_0 + a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_q a_{t-q}$$

Model parameters are: $c_0, \theta_1, \theta_2, \ldots, \theta_q$.

Time series given by MA model is always weakly stationary

$$var(r_t) = E (r_t - c_0)^2$$

= $E (a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \dots - \theta_q a_{t-q})^2$
= $\sigma_a^2 (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2) < \infty$

Linear process:

$$r_t - \mu = a_t + \psi_1 a_{t-1} + \psi_2 a_{t-2} + \dots$$

Under the following conditions:

 $\psi_1 = -\theta_1, \ \psi_2 = -\theta_2, \ \dots, \ \psi_q = -\theta_q, \ \psi_j = 0, \ j > q,$ MA(q) model is linear process.

Linear process in general is also denoted as $MA(\infty)$.

Moving average model of order one

This model, MA(1) model, is:

$$r_t = c_0 + a_t - \theta_1 a_{t-1}$$

 $E(r_t) = c_0.$

Key topics:

- Autocovariance function
- Autocorrelation function (ordinary)
- \bullet Invertibility condition
- Partial autocorrelation function

1. Autocovariance function

$$\gamma_l = E(r_t - c_0)(r_{t-l} - c_0) = E(a_t - \theta_1 a_{t-1})(a_{t-l} - \theta_1 a_{t-l-1})$$

$$\gamma_l = \begin{cases} (1+\theta_1^2)\sigma_a^2, & l=0\\ -\theta_1\sigma_a^2, & l=1\\ 0, & l>1 \end{cases}$$

2. Ordinary autocorrelation function

$$\rho_{l} = \frac{\gamma_{l}}{\gamma_{0}} = \begin{cases} 1, & l = 0\\ -\frac{\theta_{1}}{1 + \theta_{1}^{2}}, & l = 1\\ 0, & l > 1 \end{cases}$$

- ACF cuts off at lag 1. Only non-zero value is for l = 1.
- Values of ACF are zero for lags greater than order q = 1.

Two relevant properties of ACF (for exercise):

- 1. There are two different MA(1) models with the same ACF.
- 2. $\rho_1 \in (\pm 0.5)$.

3. Invertibility condition

From MA(1) model, a_t is:

$$r_t = a_t - \theta_1 a_{t-1} \Longrightarrow a_t = r_t + \theta_1 a_{t-1}$$

Also:

$$a_{t-1} = r_{t-1} + \theta_1 a_{t-2}$$

$$a_{t-2} = r_{t-2} + \theta_1 a_{t-3}$$

etc.

$$r_{t} = a_{t} - \theta_{1}a_{t-1}$$

= $a_{t} - \theta_{1} (r_{t-1} + \theta_{1}a_{t-2})$
= $-\theta_{1}r_{t-1} - \theta_{1}^{2} (r_{t-2} + \theta_{1}a_{t-3}) + a_{t}$
= ...
= $-\theta_{1}r_{t-1} - \theta_{1}^{2}r_{t-2} - \theta_{1}^{3}r_{t-3} - \dots + a_{t}.$

For: $\pi_j = -\theta_1^j, j = 1, 2, \dots$ we get $AR(\infty)$ representation:

$$r_t = \pi_1 r_{t-1} + \pi_2 r_{t-2} + \pi_3 r_{t-3} - \ldots + a_t$$

- What is condition for stationarity of $AR(\infty)$ representation?
- Answer: Given how π -weights are introduced, we conclude: $|\theta_1| < 1$.
- This is an invertibility condition that associates MA and AR models.

3. Invertibility condition - additionally

$$r_t = a_t - \theta_1 a_{t-1} \Longrightarrow r_t = (1 - \theta_1 L) a_t \Longrightarrow \frac{1}{(1 - \theta_1 L)} r_t = a_t$$

Invertibility condition, $|\theta_1| < 1$, enables following form of $\frac{1}{(1 - \theta_1 L)}$:

$$\frac{1}{(1-\theta_1 L)} = \left(1 + \theta_1 L + \theta_1^2 L^2 + \theta_1^3 L^3 + \ldots\right)$$

 $AR(\infty)$ model is reached:

$$\frac{1}{(1-\theta_1 L)}r_t = a_t \Longrightarrow (1+\theta_1 L + \theta_1^2 L^2 + \theta_1^3 L^3 + \dots) r_t = a_t$$

$$r_t = -\theta_1 r_{t-1} - \theta_1^2 r_{t-2} - \theta_1^3 r_{t-3} - \ldots + a_t.$$

- 4. Partial autocorrelation function
 - PACF of MA(1) tails off for many lags (proof is skipped).
 - This is due to:
 - $MA(1) \Longrightarrow AR(\infty)$
 - Basic idea of PACF is derived from AR model:

 ϕ_{ll} is the last autoregressive parameter in AR(l) model.

- If $\theta_1 > 0$ (negative autocorrelation), PACF has all negative values, and it decays exponentially (in absolute value).
- If $\theta_1 < 0$ (positive autocorrelation), PACF alternates sign for each lag starting with positive value and it decays exponentially (in absolute value).
- Factor that controls the decay of ϕ_{ll} is $-\theta_1^l$.

Model	ACF	PACF
AR(p)	It tails off as exponential decay or as damping sine wave.	$\phi_{11} \neq 0, \phi_{22} \neq 0,, \phi_{pp} = \phi_p,$ $\phi_{ll} = 0 \text{ for } l > p.$ It cuts off at lag p.
MA(q)	$\rho_1 \neq 0, \rho_2 \neq 0,, \rho_q \neq 0,$ $\rho_l = 0 \text{ for } l > q.$ It cuts off at lag q.	It tails off as exponential decay or as damping sine wave.
ARMA (p,q)	It tails off. The first q values are determined by AR and MA parameters. For lags greater than q coefficients behave as in AR model.	It tails off. The first p values are determined by AR and MA parameters. For lags greater than p coefficients behave as in MA model.

10

Is there autocorrelation at certain lag *I*? (H_0 : ρ_I =0)

- Validity of the hypothesis H₀: ρ_l=0 is tested against the alternative H₁: ρ_l≠0 by checking whether estimator of the lag-*l* autocorrelation coefficient is an element of the interval [-1.96/√T, 1.96/√T].
- Null hypothesis cannot be rejected if:

$$\hat{
ho}_l \in \left[-1.96 / \sqrt{T}, 1.96 / \sqrt{T}
ight]$$

• Null hypothesis is rejected at the 5% significance level if

$$\hat{\rho}_l \notin \left[-1.96/\sqrt{T}, 1.96/\sqrt{T}\right]$$

Is there autocorrelation up to order *m*? (H₀: $\rho_1 = \rho_2 = ... = \rho_m = 0$)

Box-Pierce and Box-Ljung test statistics are applied on the residuals:

$$Q^{*}(m) = BP(m) = T \sum_{l=1}^{m} \hat{\rho}_{l}^{2} : \chi_{m-p-q}^{2}$$

$$Q(m) = BLj(m)$$

$$= T(T+2) \sum_{l=1}^{m} \frac{\hat{\rho}_{l}^{2}}{T-l} : \chi_{m-p-q}^{2}$$
Note: the number of degrees of freedom
is $m - p - q$
Null hypothesis is rejected at the 5% significance level if
 $Q(m)$ is greater than the appropriate 5% critical value of
chi-squared distribution with *m-p-q* degrees of freedom.

Coefficient of skewness	Coefficient of kurtosis
$\alpha_3 = 0$ for N distribution	$\alpha_4 = 3$ for N distribution
$\hat{\alpha}_{3} = \frac{\sum \hat{a}_{t}^{3}}{\frac{T}{\hat{\sigma}_{a}^{3}}}$	$\hat{\alpha}_4 = \frac{\frac{\Sigma \hat{a}_t^4}{T}}{\hat{\sigma}_a^4}$
Under the null hypothesis	Under the null hypothesis
$\hat{\alpha}_3: N\left(0, \frac{6}{T}\right)$	$\hat{\alpha}_4: N\left(3, \frac{24}{T}\right)$
$\sqrt{\frac{T}{6}}\hat{\alpha}_3: N(0,1)$	$\sqrt{\frac{\mathrm{T}}{24}}(\hat{\alpha}_4 - 3) : \mathrm{N}(0,1)$
$JB = \frac{T}{6} \left[\hat{\alpha}_3^2 + \frac{1}{6} \right]$	$\frac{(\hat{\alpha}_4 - 3)^2}{4} \bigg] : \chi_2^2 $ 13

Function g	Penalty term	Name of information criterion	Notation
2	2(p+q)/T	Akaike	AIC
lnT	(lnT)(p+q)/T	Schwarz	SC or SIC
2lnlnT	2(lnlnT)(p+q)/T	Hannan-Quinn	HQC or HQIC

<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Example: Fitting ARMA model to annual GDP growth in Serbia

Data set: gdp.wf1

Quarterly nominal GDP data for: 2005q1 - 2020q4 (www.nbs.rs)

Annual growth of GDP is considered for: 2006q1 - 2019q4 (T=56).

It is computed as: d4lgdp=lgdp-lgdp(-4), lgdp=log(gdp).

SACF and SPACF for D4X is examined.

Two specifications are assumed at the beginning ARMA(1,0) and ARMA(0,3).

Additional modelling is performed by the inclusion of step dummy variable (D2006Q1=1 for 2006Q1-2008Q3 and 0 otherwise).

Dependent Variable: Dependent Variable: Dependent Variable: Dependent Depend	04LGDP tional Least Sq	uares (Gauss-N	Newton / Ma	rquardt
Sample (adjusted): 20 Included observations Convergence achiever Coefficient covariance	06Q2 2019Q4 55 after adjust d after 2 iteratic computed usir	ments ons ng outer produc	t of gradien	s
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1)	0.022186 0.796926	0.011166 0.080841	1.987023 9.857953	0.052 ² 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.647088 0.640430 0.016808 0.014974 147.6999 97.17924 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quin Durbin-Watso	dent var ent var riterion erion n criter. on stat	0.022852 0.028031 -5.298179 -5.225185 -5.269951 1.635409
Inverted AR Roots	.80			

Tho	M SACF an	lodel 1: ARM	IA(1,0 RESI) DUAI	_S:	four
mer	Sample (adjusted): 2	2006Q2 2019Q4	Telat	ona	lay	iour
	Q-statistic probabilit	ties adjusted for 1 AR	MA term			
	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	· •	I I 🔲 I	1 0.17	0.170	1.6770	
	ı 🗖 ı	i 🗐 i	2 0.11	9 0.093	2.5112	0.113
	I 🔲 I	1	3 -0.09	3 -0.132	3.0347	0.219
			4 -0.38	5 -0.381	12.124	0.007
	I I	ı 🗖 ı	5 0.02	0.188	12.149	0.016
	I 🛄 I	I I I I	6 -0.20	5 -0.177	14.868	0.011
	I 🛛 I	I 🔲 I	7 -0.01	3 -0.066	14.890	0.021
	I 🔲 I	I I I	8 -0.04	5 -0.148	15.034	0.036
	I 🔲 I	I I 🛛 I	9 -0.06	2 0.042	15.294	0.054
	· 🗖	I I 🗖 I	10 0.23	7 0.149	19.214	0.023
	1 🖡 I	I I I	11 0.04	6 -0.024	19.364	0.036
	ı 🛄	I 🔲 I	12 0.24	5 0.131	23.754	0.014

Method: ARMA Condit steps)	94LBDP tional Least Squ	ıares (Gauss-I	Newton / Mar	quardt
Sample (adjusted): 20 Included observations: Failure to improve likel Coefficient covariance MA Backcast: OFF	06Q2 2019Q4 55 after adjust ihood (non-zerc computed usin	ments gradients) aft g outer produc	er 17 iteration t of gradients	ns S
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.018729	0.007972	2.349235	0.0226
AR(1) MA(4)	0.846054 -0.446659	0.065522 0.134827	12.91244 -3.312829	0.000
<u>``</u>	0 713252	Mean depen	dent var	0.022852
R-sanared			S.D. dependent var 0.0	
K-squared	0 702224	S.D. depend	ent var	0.028031
K-squared Adjusted R-squared S.E. of regression	0.702224	S.D. depend Akaike info d	ent var riterion	0.02803
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.702224 0.015296 0.012167	S.D. depend Akaike info c Schwarz crit	ent var riterion erion	0.02803 -5.469430 -5.359939
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.702224 0.015296 0.012167 153.4093	S.D. depend Akaike info c Schwarz crit Hannan-Qui	ent var riterion erion nn criter.	0.02803 -5.46943 -5.35993 -5.42708
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.702224 0.015296 0.012167 153.4093 64.67206	S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion erion nn criter. son stat	0.02803 -5.469430 -5.359939 -5.427089 1.738574

IV	lodel 2:	ARMA(0,3)	
Dependent Variable: I Method: ARMA Cond steps)	D4LBDP itional Least Squ	iares (Gauss-N	lewton / Mar	quardt
Sample (adjusted): 20 Included observations Failure to improve like Coefficient covariance MA Backcast: OFF	006Q1 2019Q4 : 56 after adjust lihood (non-zerc e computed usin	ments o gradients) afte g outer produc	er 11 iteration t of gradients	ns S
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.032578	0.006962	4.679582	0.0000
N/A/1)	0.945240	0.125437	7.535579	0.0000
	0 70007	0 4 4 7 0 0 5		
MA(2) MA(3)	0.782287 0.452571	0.147865 0.126311	5.290552 3.583001	0.0000
MA(2) MA(3) R-squared	0.782287 0.452571 0.652501	0.147865 0.126311 Mean depend	5.290552 3.583001	0.0000
R-squared Adjusted R-squared	0.782287 0.452571 0.652501 0.632453	0.147865 0.126311 Mean depend S.D. depende	5.290552 3.583001 dent var ent var	0.0000 0.0007 0.023704 0.028498
R-squared Adjusted R-squared S.E. of regression	0.782287 0.452571 0.652501 0.632453 0.017277	0.147865 0.126311 Mean depend S.D. depende Akaike info c	5.290552 3.583001 dent var ent var riterion	0.0000 0.0007 0.023704 0.028498 -5.210118
MA(2) MA(3) R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.782287 0.452571 0.652501 0.632453 0.017277 0.015522	0.147865 0.126311 Mean depend S.D. depende Akaike info c Schwarz crite	5.290552 3.583001 dent var ent var riterion erion	0.023704 0.028498 -5.210118 -5.065450
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.782287 0.452571 0.652501 0.632453 0.017277 0.015522 149.8833	0.147865 0.126311 Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir	5.290552 3.583001 dent var ent var riterion erion an criter.	0.0000 0.0007 0.023704 0.028498 -5.210118 -5.065450 -5.154030
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.782287 0.452571 0.652501 0.632453 0.017277 0.015522 149.8833 32.54695	0.147865 0.126311 Mean depend S.D. depend Akaike info c Schwarz critt Hannan-Quir Durbin-Wats	5.290552 3.583001 dent var ent var riterion erion on criter. on stat	0.023704 0.028498 -5.210118 -5.065450 -5.154030 1.811053
MA(2) MA(3) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.782287 0.452571 0.652501 0.632453 0.017277 0.015522 149.8833 32.54695 0.000000	0.147865 0.126311 Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	5.290552 3.583001 dent var ent var riterion erion an criter. on stat	0.0000 0.023704 0.028498 -5.210118 -5.065450 -5.154030 1.811053

Method: ARMA Condit steps)	ional Least Squ	iares (Gauss-N	lewton / Mar	quardt
Sample (adjusted): 200 Included observations: Failure to improve likeli Coefficient covariance MA Backcast: OFF	06Q2 2019Q4 55 after adjust hood (non-zero computed usin	ments gradients) afte g outer produc	er 19 iteratior t of gradients	ns ;
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.016565	0.007396	2.239697	0.0295
D2006Q1	0.034611	0.013594	2.546102	0.0140
MA(4)	-0.461975	0.088202	-3.335230	0.0000
R-squared	0.746135	Mean depend	dent var	0.022852
Adjusted R-squared	0.731202	S.D. dependent var Akaike info criterion		0.028031
S.E. of regression	0.014533			-5.554867
Sum squared resid	0.010771	Schwarz criterion		-5.408879
Log likelihood	156.7588	Hannan-Quinn criter.		-5.498412
	40.00470	Durbin-Watson stat		1 837305
F-statistic	49.96479	Durbin-wais	Un stat	1.007.000

Model	1.	2.	3.	
	Reduced ARMA(1,4)	ARMA(0,3)	Reduced ARMA(1,4) +dummy	
SC	-5.3599	-5.0655	-5.4089	
Regression standard error	0.015296	0.017277	0.01453	
Q(4)	2.13(0.34)	0.95(0.33)	0.72(0.70)	
Q(12)	10.26(0.42)	6.29(0.71)	11.58(0.31)	
JB	0.95(0.62)	4.64(0.10)	1.38(0.50)	