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Short description 

■This part of the course is designed to introduce  

econometric time-series tools used in finance and 

to gain understanding of the characteristics of 

financial data.

■The course covers the application of 

econometric methods to analyze real economic

data by using EVIEWS 12/13 software.
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Literature for the course

■ Any textbook of Econometrics and Time Series Analysis that 

covers the subject

■ Tsay, R. S. Analysis of Financial Time Series, 2010, Wiley,

(3rd edition), Ch. 2 and Ch. 3.

■ Brooks, C. Introductory Econometrics for Finance, 2019, 

Cambridge University Press (4th edition), Ch. 6 and Ch. 9.

■ Mills, T.C. Applied Time Series Analysis, 2019, Academic

Press. 

3

Key time series literature

■ Box, G.E.P., G.M. Jenkins, G.C. Reinsel and G. M. Ljung, 

Time Series Analysis: Forecasting and Control, 2015, 

Wiley, (5th edition)

■ Brockwell, P. and R. Davis, Time Series: Theory and 

Methods, 1991, Springer-Verlag

■ Hamilton, J., Time Series Analysis, 1994, Princeton

University Press

■ Lutkepohl, H., A New Introduction to Multiple Time 

Series Analysis, 2005, Springer-Verlag
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Types of data

■ Time series data

■ Anually, quarterly, monthly, daily, as 

transaction occurred.

■ Cross section data

■ Data of more variables collected at one 

point in time.

■ Panel data 

■ Time series data collected for different

individuals.

5

Our main interest

■ Time series data

• Collection of data is well organized 

and these data are easily available

• Methodological framework of

econometric time series analysis is 

well developed.

• Analysis is relevant, especially in 

forecasting macroeconomic and

financial data. 
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WHAT IS TIME SERIES 

ANALYSIS?

7

Key property of time series: 

autocorrelation

■ Time series is the sequence of the data 
ordered/determined by calendar time.

■ Calendar time: year, month, day, hour, a 
minute,…

– Example: Observation on prices in December 
2022 precedes observation in January 2023 
and later. 

– This leads to a consecutive analysis of time 
series data while leaving their sequence intact.   

8
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Key property of time series: 
autocorrelation (II)

■ Standard notation: Yt, t=1,2,…,T

o t – time index runs from 1 to T and T is the sample 
size

o It is short-hand for observations: Y1, Y2,…, YT.

■ It is likely that part of the value of Yt-1 is reflected in the 
value Yt: it makes sense to analyze Yt-1 prior to 
analyzing Yt

o Observations are likely to be correlated.

o The concept is called autocorrelation.

■ Autocorrelation can be exploited to obtain a first 
impression of possible useful model to describe and 
forecast the time series.

9

Main purpose of time series analysis:

To discover underlying

autocorrelation pattern of the data
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Basic difference between standard 
econometric approach and time series 

approach

■ Standard econometric approach:

Y=f(X1, X2,…), where X1, X2,…, are variables 

suggested by economic theory.

■ Time series approach:

Yt=f(Yt-1, Yt-2,…), 

• Explanatory variables suggested by economic

theory are ignored

• The past behaviour of Yt is sufficient for modeling 

11

Main features of 
economic time series

■ Trend

■ Seasonality

■ Aberrant observations/structural breaks

■ Conditional heteroskedasticity/unstable 

conditional variability.

12
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Trend

■ Long-term component

■ Time series is systematically growing or falling over 

time.

■ Trending can be either stochastic or deterministic.

■ Stochastic trend: in time t-1 we cannot forecast 

value in t.

■ Deterministic trend: function of the form a+bt

(a,b=const) determines the long-run movement of 

time series. 

13

Examples of stochastic trend: 
Data from the Serbian economy 
(2014:1 – 2022:10)
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Examples of deterministic trend: 
Data from the Serbian economy 

(2013:1 – 2022:10)
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Seasonality

■ Quarterly and monthly data 

■ Similar behaviour in same quarters/month over years

■ Deterministic or stochastic  

■ There is higher correlation between same quarters over

different years than between quarters within the given year

■ Example: quarterly GDP in Serbia (2005:1 – 2022:2) 
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Aberrant observations

■ Exogenous events may cause the change in the 
behavior of time series 

(NATO intervention, transition process, the 
Great recession, oil price shocks, pandemic, 
etc.) 

■ Structural breaks (outliers) – observations that 
are inconsistent with the rest of the sample 

o One-time change (additive outlier)

o Persistent change (innovational outlier)

■ Intercept of trend function (level shift)

■ Slope of trend function (slope shift)

■ Slope and intercept

17

Additive outliers in the Serbian inflation rate 
during transition process (2001-2009)

■ Introduction of extensive tax reform (2001:4)

■ Change of the price of electricity (2002:7)

■ Introduction of VAT (2005:1)

■ Change of several administratively controlled prices (2009:1)

18
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Change in the intercept of trend 
function in the Serbian index of industrial
production (2001:1 – 2022:9) and additive
outlier
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Conditional heteroskedasticity

■ Key feature of financial time series

■ News arrives on a market: we react by selling or buying 
many stocks. The day after the news was digested: we 
wish to return to the behaviour before the arrival of the 
news. 

■ Pattern: increase or decrease in the returns on one day 
followed by an opposite change on the next day. 

■ Large absolute returns tend to appear in clusters. 

■ Turbulent (high variability) period is followed by quite (low  
variability) period; these subperiods are recurrent but not 
in a periodic way.

■ Autocorrelation is present, but in data variability

■ Unstable conditional variability: conditional 
heteroskedasticity

■ Conditional variability (or standard deviation): volatility

20
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Conditional heteroskedasticity:
Weekly changes of oil prices
Europe Brent Spot Price (Dollars per Barrel)
Period: January/I week, 2010 - January/I week, 2020 

21

20

40

60

80

100

120

140

10 11 12 13 14 15 16 17 18 19

Weekly prices in US dollars

-20

-10

0

10

20

10 11 12 13 14 15 16 17 18 19

Weekly changes of prices in %

1

2

3

4

5

6

7

8

10 11 12 13 14 15 16 17 18 19

 Estimated conditional standard deviation

Conditional heteroskedasticity:
Weekly changes of oil prices
Europe Brent Spot Price (Dollars per Barrel)
Period: January/I week, 2010 - January/I week, 2023 
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Conditional heteroskedasticity:
Daily depreciation of the nominal 
EURO/USD exchange rate 
Period: January 2, 2012 – October 1, 2021 
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Is analysis of financial time series 
different from other time series 
analysis?

■ Not exactly

■ But, there is more uncertainty to be 

captured due to unstable variability 

■ Time series of interest: asset return

o Discrete return (the simple return)

o Continuous return (the log return)

24
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The simple asset return

■ Pt – the price of an asset at time index t 

■ Pt-1 – the price of an asset at time index t-1

■ Assumption: this asset pays no dividends 

■ Rt – the simple asset (net) return between t-1 and t:  

Rt= (Pt- Pt-1)/ Pt-1= Pt/ Pt-1- 1

This is also known as one-period simple return

■ The simple asset return from t-k to t(k-period return):

Rt= (Pt- Pt-k)/ Pt-k

25

Log asset return

26

 Pt-1 – the price of an asset at time index t-1

 Pt – the price of an asset at time index t 

 Assumption: this asset pays no dividends 

 rt – the log asset return between t-1 and t (one- period 

log return): rt= log Pt - log Pt-1

 If Pt/ Pt-1- 1 is close to zero, then:

rt= log Pt- log Pt-1 =log (Pt/ Pt-1) ≈ Pt/ Pt-1- 1 = Rt

Log asset return ≈ Simple asset return

25
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Log(1+Δ)≈ Δ
for Δ close to zero

■ Taylor series expansion of function f(x) around x0 of 

order k (f(x) is continuous in the neighborhood of x0 and 

its first k derivatives exist)
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Log(1+Δ)≈ Δ (II)

■ Taylor series expansion of order 1:
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Outline of the course 

■ Basic concepts in univariate time series analysis

■ Linear time series models (ARMA models)

■ Nonstationarity and unit roots (ARIMA models)

■ Modeling conditional variability ((G)ARCH models)

29

Outline of the second part of Lecture 1: 
Basic concepts

■ Time series

■ Stationarity

■ White noise

■ Basic tools: autocovariance and autocorrelation 

functions 

■ Testing for autocorrelation in time series

■ Examples

■ Linear process

30
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1

Lecture 1
Basic concepts 

Zorica Mladenović 

2

Structure

 Elementary notation

 Time series

 Stationarity

 Autocovariance function

 Autocorrelation function

 Autocorrelation tests

 Examples

 Linear process

1
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Elementary notation

 Time series in time t: rt

 Lagged-one period: t-1

 The lag shift operator: L rt= rt-1

(the backward shift operator:  B rt= rt-1)

4

Elementary notation II 

 First order difference operator (ordinary difference):

 Difference of order k operator (seasonal difference):

 Δ𝑟 = 𝑟 − 𝑟 = 1 − 𝐿 𝑟

Δ 𝑟 = 𝑟 − 𝑟  = 1 − 𝐿 𝑟

3
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More on the lag shift operator L:
some properties

 Lkrt=rt-k, k=1,2,...

 L-krt=rt+k, k=1,2,...

 Lm=m, m =const.

 L0rt=rt.

 Li (Ljrt)= Lj (Lirt) ⟹ rt-j-i = rt-i-j.

6

Time series: working definition

 A collection of random variables generated
sequentially in time. 

 More specific, random variables are 
considered at different time points.
 Time points are equally spaced. 

 Notation: 𝑟 , 𝑡 = 1,2, … 

 In empirical work: time series is a record of
values of certain quanitity of interest at 
different time points.

5
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Stationarity

 Descriptive explanation: 

 Time series has predictable behaviour over 
time 

 Statistical properties of time series do not 
“change much” over time 

 Two concepts of stationary time series: 

 Strictly (stationarity in narrow sence)

 Weakly (stationarity in wide sence)  

8

Strictly stationary time series 

A time series 𝑟 is said to be strictly stationary if 

 the joint distributions of random sequences

(𝑟 , 𝑟 , … , 𝑟 ) and (𝑟 , 𝑟 , … , 𝑟
 
)

are the same for all t.

 k is an arbitrary positive integer and (t1,...,tk) is  
ordered collection of k positive integers. 

 Under strict stationarity the joint distribution 
𝐨𝐟 (𝑟 , 𝑟 , … , 𝑟 )    is invariant under time shift. 

7
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Weakly stationary time series

A time series 𝑟 is said to be weakly stationary if:

     1. 𝐸(𝑟 ) = 𝜇 = 𝑐𝑜𝑛𝑠𝑡,  𝑡 = 1,2, . . .

2. 𝑣𝑎𝑟 𝑟 = 𝐸(𝑟 − 𝜇) = 𝑐𝑜𝑛𝑠𝑡,  𝑡 = 1,2, . . .

3.  cov 𝑟 , 𝑟 = 𝐸 𝑟 − 𝜇 𝑟 − 𝜇 = 𝛾 𝑙 = 𝛾𝑙,  

 𝑡 = 1,2, . . ., 𝑙 = 1,2, . . .

 Instead of 2. and 3. just the following:

                  cov 𝑟 , 𝑟 = 𝐸 𝑟 − 𝜇 𝑟 − 𝜇 = 𝛾 𝑙 = 𝛾𝑙,  

            𝑡 = 1,2, . . ., 𝑙 = 0, 1,2, . . .

10

Stationarity: covariance

X, Y  - random variables

cov 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸(𝑋 ) 𝑌 − 𝐸(𝑌)

X = 𝑟 , E(𝑟 )= 𝜇
Y = 𝑟 , E(𝑟 )= 𝜇

 cov 𝑟 , 𝑟 = 𝐸(𝑟 − 𝜇)(𝑟 − 𝜇)

9
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Weakly stationary time series II

 Expected value and variance are invariant under
time shift. 

 Covariance depends only on distance/lag between
two elements in time series. 

 For a given lag l, the covariance is the same:

cov 𝑟 , 𝑟 = 𝑐𝑜𝑛𝑠𝑡,  for given l , t = 1,2,...

12

Weakly stationary time series:
covariance is only function of time distance

                               𝑟 , 𝑟 , 𝑟 , … , 𝑟 , 𝑟 , 𝑟

𝑟 , 𝑟 , 𝑟 , … , 𝑟 , 𝑟 , 𝑟

                                       𝛾1 𝛾1

                               𝑟 , 𝑟 , 𝑟 , … , 𝑟 , 𝑟 , 𝑟

         𝛾1                                       
𝛾1

           𝑟 , … , 𝑟 , … , 𝑟 , … , 𝑟

𝛾2                       𝛾2

11
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Relationship between
weakly and strictly stationarity

 Strictly stationary time series is also weakly 
stationary if its first two moments are finite.

 Weakly stationary time series is not strictly
stationary in general. 

 If weakly stationary time series does not have
stable moments of order higher than 2, then it
is not strictly stationary. 

 Both concepts of stationarity are identical if
elements of time series are normally distributed.

Three types of stationarity 
depending on the expected value 

14

 Expected value

 Zero

 Non-zero

 Linear trend function 

(trend-stationarity)

13
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Three types of stationarity depending on the 
expected value: generated data  

15
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Elementary stationary time series: 
white noise

 Sequence of uncorrelated random variables 
with zero expected value and finite variance. 

1. 𝐸(𝑎 ) = 0,   𝑡 = 1,2, . . .

2. var 𝑎 = 𝐸 𝑎 = 𝜎 = 𝑐𝑜𝑛𝑠𝑡,  t = 1,2,...

3. cov 𝑎 , 𝑎 = 𝐸(𝑎 𝑎 ) = 0,  t = 1,2,...,  l = 1,2,...

15
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Independent white noise

 Sequence of independent random variables 
with zero expected value and finite variance. 

1. 𝐸 𝑎 = 0,   𝑡 = 1,2, …

  2. var 𝑎 = 𝐸 𝑎 = 𝜎 = 𝑐𝑜𝑛𝑠𝑡,  t = 1,2,...

   3.  𝑎 is sequence of independent random 

variables (stronger condition)

18

Gaussian white noise

 Sequence of independent and normally 
distributed random variables with zero 
expected value and finite variance. 

1. 𝐸(𝑎 ) = 0,   𝑡 = 1,2, . . .

2. var 𝑎 = 𝐸 𝑎 = 𝜎 = 𝑐𝑜𝑛𝑠𝑡,  t = 1,2,...

3.  𝑎 is sequence of independent random 
variables

4. 𝑎 : N(0,𝜎 ),  𝑡 = 1,2, . . .

17
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Gaussian white noise: generated data

19

20

Key tools for 
examining autocorrelation 

 The autocovariance function

 The autocorrelation function

19
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The lag-l autocovariance

 The lag-l autocovariance:

 Two key properties:

 𝛾 = cov( 𝑟 , 𝑟 ) = cov( 𝑟 , 𝑟 ) = cov( 𝑟 , 𝑟 ) = 𝛾

 The autocovariance function: 𝛾 , 𝛾 , 𝛾 , …

𝛾 = cov( 𝑟 , 𝑟 ) = 𝐸 𝑟 − 𝜇 𝑟 − 𝜇 , 𝑙 = 0,1,2, . . . 

1. 𝛾 = 𝐸 𝑟 − 𝜇 = var 𝑟
2. 𝛾 = 𝛾  

22

Autocorrelation function (ordinary)

 The lag-l autocorrelation coefficient measures 
correlation between rt and rt-l :

 Sequence 𝜌 , 𝜌 , 𝜌 , … is autocorrelation function (ACF)
 Graphical representation of 𝜌 , 𝜌 , 𝜌 , … is correlogram. 

𝜌 =
( , )

( ) ( )
, 𝑙 = 0,1,2, . . .

𝜌 =
cov( 𝑟 , 𝑟 )

var( 𝑟 )
=

𝛾

𝛾

𝜌 =
𝐸 𝑟 − 𝜇 𝑟 − 𝜇

𝐸 𝑟 − 𝜇 2

21
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Correlation coefficient: reminder 

 𝜌 𝑋, 𝑌 =
,

( )

 −1 ≤ 𝜌 𝑋, 𝑌 ≤1

 𝜌 𝑋, 𝑌 = 𝜌 𝑌, 𝑋

 X = 𝑟 , Y = 𝑟

  𝜌 =
( , )

( ) ( )

24

Autocorrelation function (ordinary) II

 Properties:

1. 𝛾 = var 𝑟 ⇒ 𝜌 = 1

2. 𝛾 = 𝛾 ⇒ 𝜌 = 𝜌

3. 𝜌 ≤ 1,  𝑙 = 0,1,2, …

4. Stationary time series is not serially correlated if
and only if  𝜌 =0, for all positive l. 

23
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Sample autocorrelation function 

𝑇𝑖𝑚𝑒 series of lenght T: 

𝑟 , 𝑟 , . . . , 𝑟 , 𝑟 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛

The lag-l sample autocorrelation coefficient 

𝜌 =
∑ (𝑟 − 𝑟) (𝑟 − 𝑟)

∑ (𝑟 − 𝑟)
, 𝑙 = 0, . . . , 𝑇 − 2

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒:  𝜌 , 𝜌 , . . .   is sample autocorrelation 
function (S𝐴𝐶𝐹)

𝜌 =
𝐸 𝑟 − 𝜇 𝑟 − 𝜇

𝐸 𝑟 − 𝜇 2

26

Sample autocorrelation function II

If r  𝑖𝑠 𝑖𝑖𝑑 sequence (independent and identically 
distributed)of random variables, with constant 
variance, 𝑡ℎ𝑒𝑛: 

1. 𝜌  − biased, but consistent estimator

2. var(𝜌  )=

3.  For 𝐥𝐚𝐫𝐠𝐞 samples:  𝜌 :  AN 0,

⇒ 𝑧 =
𝜌 − 0

1
T

= 𝜌 𝑇:  𝑁 0,1      

⇒ P −1.96 ≤ 𝜌 𝑇 ≤ 1.96 = 0.95

⇒ P −1.96/ 𝑇 ≤ 𝜌 ≤ 1.96/ 𝑇 = 0.95

25
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Sample autocorrelation function III

If r  𝑖𝑠 weakly stationary time series,  𝑡ℎ𝑒𝑛: 

1. 𝜌  − biased, but consistent estimator

2. var(𝜌  )= 1 + 2𝜌 + 2𝜌 + ⋯ + 2𝜌

3.  For 𝐥𝐚𝐫𝐠𝐞 samples and 
    r  being Gaussian process (𝜌 = 0, 𝑗 > 𝑙)

 
𝜌 :  AN 0, var (𝜌 )

⇒ 𝑧 =
⋯ /

: N (0,1)

28 28

Autocorrelation tests

1. Is there autocorrelation at certain lag l?
H0: rl = 0, H1: rl ≠ 0

2. Is there joint autocorrelation up to order m?
H0: r1= r2 =...= rm =0, 

H1: At least one autocorrelation 
coefficient (out of the first m) is 

not equal to zero. 

27

28
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Is there autocorrelation 
at certain lag l? (H0: r l =0)

The hypothesis H0: r l = 0 is tested against the alternative 

H1: r l ≠ 0 by checking whether estimator of the lag-l
autocorrelation coefficient is an element of the interval
−1.96/ T, 1.96/ T

Null hypothesis cannot be rejected if: 

Null hypothesis is rejected at the 5% significance level if

𝜌 ∈ −1.96/ T, 1.96/ T

𝜌 ∉ −1.96/ T, 1.96/ T

30

Is there joint autocorrelation 
up to order m? 
(H0: r 1 = r 2 =...= r m =0)

 Box-Pierce and Box-Ljung test statistics are applied:

 Null hypothesis is rejected at the 5% significance level if Q(m)
is greater than the appropriate 5% critical value of chi-squared 
distribution with m degrees of freedom.

𝑄
∗

(𝑚) = 𝐵𝑃(𝑚) = 𝑇 𝜌 : 𝜒

𝑄(𝑚) = 𝐵𝐿𝑗(𝑚) = 𝑇(𝑇 + 2)
𝜌

𝑇 − 𝑙
: 𝜒

𝑚 = 𝑇,  T/4, ln( 𝑇)

29
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Distribution of BP and BLj  

  𝐵𝑃(𝑚) = 𝑇 ∑ 𝜌 .

 If the null is true:
𝜌 : N(0,1/T) ⇒ 𝑧 = 𝑇𝜌 : N(0,1)
𝜌 : N(0,1/T) ⇒ 𝑧 = 𝑇𝜌 : N(0,1)
...
𝜌 : N(0,1/T) ⇒ 𝑧 = 𝑇𝜌 : N(0,1)

𝑧 + 𝑧 +. . . +𝑧
⇓

: 𝜒

           𝑇 ∑ 𝜌 = 𝐵𝑃(𝑚) : 𝜒 .

32

Examples: 
The use of autocorrelation function

1. Numerical example on testing if time series is 
white noise

2. Example of white noise generated within 
EVIEWS.

3. Numerical example on calculating Box-Ljung
statistic

31
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33

Example 1

 Based on time series data set of 164 observations with
null mean and constant variance, sample autocorrelation 
coefficients are calculated for lags 1, 2,..., 10: 

 Can we consider this time series to be white noise?

34

Example 1 (II)

 We need to check the validity of H0: ρl = 0 
against the alternative  H1: ρl ≠ 0, l=1,2,...,10. 

 If the null cannot be rejected for all ten lags, then there is 
no significant autocorrelation. Hence, the white noise 
seems to be appropriate description of this time series.  

 The corresponding confidence interval with  95% 
probability is  

 Time series of interest is not white noise:

−0.153; 0.153

𝜌 = 0.456 ∉ −0.153; 0.153

33
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35

Example 1 (III)

 The graph of sample autocorrelation function (sample
correlogram-SACF) gives an automatic answer to the question. 

 Note: Dotted lines represent the 95% significance band 
 153.0;153.0
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1 2 3 4 5 6 7 8 9 10

SACF

36

Example 2
Gaussian N(0,1) white noise: 
data plot and histogram
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Series: at
Sample 1 300
Observations 300

Mean       0.062149
Median   0.084810
Maximum  2.801615
Minimum -2.729497
Std. Dev.   0.990332
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Gaussian white noise at, N(0,1)
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37

Example 2 (II)
Gaussian white noise: sample correlogram
(the 95% significance band:[-0.11,0.11])

SACF-at 

0 5 10 15

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00
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Example 3
Annual core inflation in Serbia, 2014:12-2021:1 (T=74) 
Analysis based on SACF and BLj test
(core_inflation.wf1) 

0.4
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2.4

2015 2016 2017 2018 2019 2020

Core inflation in Serbia (annual growth rate in %)
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39

Example 3 (II)
Analysis of sample autocorrelation function for core
inflation in Serbia, 2014:12-2021:1 (T=74)

Lag SACF                                 Is the autocorrelation significant?

 1 0.824 YES
 2 0.754 YES
 3 0.657 YES
 4 0.564 YES
 5 0.508 YES
 6 0.402 YES
 7 0.327 YES
 8 0.287 YES

 The 95% significance band: [-0.23;0.23]

40

Example 3 (III)
Testing for joint autocorrelation of core inflation in 
Serbia, 2014:12-2021:1 (T=74)

H : 𝜌 =  𝜌  = ... =  𝜌  = 0,  H :  H  is not true

𝐵𝐿𝑗(𝑚) = 𝑄(𝑚) = 𝑇(𝑇 + 2)
𝜌

𝑇 − 𝑙
: 𝜒

H :  𝜌 =  𝜌  = ... =  𝜌  = 0, H : H  is not true

𝑄(8) = 74 ∗ 76
          

∗
0.824

74 − 1
+

0.754

74 − 2
+

0.657

74 − 3
+

0.564

74 − 4
+

0.508

74 − 5
+

0.402

74 − 6
+

0.327

74 − 7
+

0.287

74 − 8

𝑄 8 = 206.9 > 𝜒 (0.05) = 15.51 ⇒ H  is  rejected.  

𝐓𝐢𝐦𝐞 𝐬𝐞𝐫𝐢𝐞𝐬 𝐞𝐱𝐡𝐢𝐛𝐢𝐭𝐬 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐭 𝐣𝐨𝐢𝐧𝐭 𝐚𝐮𝐭𝐨𝐜𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐨𝐫𝐝𝐞𝐫 𝟖.

39
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41

Example 3 (Eviews output of SACF)

Sample: 2014M12 2021M01
Included observations: 74

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.824 0.824 52.352 0.000
2 0.754 0.232 96.731 0.000
3 0.657 -0.037 130.94 0.000
4 0.564 -0.064 156.52 0.000
5 0.508 0.062 177.58 0.000
6 0.402 -0.144 190.92 0.000
7 0.327 -0.044 199.87 0.000
8 0.287 0.102 206.87 0.000
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